Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases

By LabMedica International staff writers
Posted on 07 Apr 2025

Clinical ultrasound, commonly used in pregnancy scans, provides real-time images of body structures. More...

It is one of the most widely used imaging techniques in medicine, but until recently, it had little application in imaging microscopic structures such as individual cells. Ultrasound can penetrate several centimeters into opaque mammalian tissue, offering non-invasive imaging of whole organs. This allows for the observation of cellular behavior in its natural environment, something that light-based methods struggle to achieve in larger living tissues. Now, scientists have successfully used ultrasound to image specifically labeled cells in three dimensions, marking the first time living cells inside whole organs were imaged across volumes the size of a sugar cube.

This was achieved by using a new ultrasound technique, called nonlinear sound sheet microscopy, by a team of scientists from Delft University of Technology (Delft, Netherlands), along with collaborators at California Institute of Technology (Caltech, Pasadena, CA, USA). Light sheet microscopy, currently the leading technology for imaging living cells in 3D—such as during embryo development—has its limitations, as it can only be used on translucent or thin specimens, with light unable to penetrate more than 1 mm into opaque tissue. The breakthrough in ultrasound imaging was facilitated by the discovery of a sound-reflecting probe in the Shapiro Lab at Caltech. This probe consists of nanoscale, gas-filled vesicles that illuminate in ultrasound images, allowing cells to become visible. These vesicles have a protein shell, and their brightness can be adjusted by engineering their composition. The team used these gas vesicles to track cancer cells in their study.

In addition to tracking individual cells, the researchers utilized ultrasound in combination with microbubbles as probes circulating in the bloodstream to detect brain capillaries. To their knowledge, nonlinear sound sheet microscopy is the first technique that can observe capillaries in living brains. This breakthrough has significant potential for diagnosing small vessel diseases in patients. Since microbubble probes are already approved for clinical use, this technique could be implemented in hospitals within a few years. Beyond its clinical applications, the researchers believe that sound-sheet microscopy will have a major impact on biological research, particularly in the development of new cancer treatments.

“Our imaging technique can distinguish healthy versus cancer tissue,” said lead researcher David Maresca. “Furthermore, it can visualize the necrotic core of a tumor; the center of the tumor where cells start dying due to a lack of oxygen. Thus, it could assist in monitoring the progression of cancer and the response to treatment.”

Related Links:
Delft University of Technology
Caltech


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The VITROS hs Troponin I Assay is designed for use on VITROS Systems (Photo courtesy of QuidelOrtho)

High-Sensitivity Troponin I Assay Aids in Diagnosis of Myocardial Infarction

Heart disease remains the leading cause of death for adults over 45 in the United States, accounting for nearly one in three deaths. In 2023 alone, 919,032 Americans died from cardiovascular disease —... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.