We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Single-Cell Proteomics of Localized Prostate Cancer Defines Disease Heterogeneity

By LabMedica International staff writers
Posted on 26 Apr 2022

Prostate cancer affects about 12. More...

6% of men over the course of their lives, and while most individuals with localized disease can be cured, disease does recur in a small number of patients. The treatment of localized prostate cancer is based on clinicopathological information including Gleason score, prostate-specific antigen (PSA) levels, stage, and patient age.

Several potential biomarkers including gene fusions, mutations, epigenetic heterogeneity, and proteins have been studied. Technological advances in proteomics now allow both exploration of the proteome for biomarkers and assessment of the heterogeneity of biomarker expression. However, analysis of a whole tissue core misses important cell-to-cell variability.

An international team of clinical scientists collaborating with the University of Zürich (Zürich, Switzerland) collected samples from a cohort of 58 prostate cancer patients that included 24 patients with grade II disease, 22 with grade III, and 12 with grade V disease. For 17 patients, they also collected and analyzed adjacent benign prostatic tissue. The single-cell mass cytometry analysis they used relied on a panel of 36 metal-tagged antibodies that recognized surface markers, enzymes, transcription factors, and markers of functional readouts. In all, they analyzed more than 1.67 million cells.

For the dissociation of tissues to single cells, the tissue was minced using surgical scalpels and further disintegrated using the Tumor Dissociation Kit, human)and the gentleMACS Dissociator (Miltenyi Biotech, Bergisch Gladbach, Germany). The team also performed mass cytometry barcoding, antibodies and antibody labeling, antibody staining and mass cytometry data collection and data were acquired on an upgraded Helios CyTOF 2 mass cytometer (Fluidigm, South San Francisco, CA, USA). Automated platforms were used for in situ protein expression analyses of CD15, and CD3 (Leica Bond-Max, LeicaBiosystems, Deer Park, IL, USA).

The investigators fed their data into the Franken computational pipeline, an unsupervised, single-cell clustering approach they developed. Franken identified 55 different cell clusters, which the team organized in a set of 33 metaclusters, consisting of 14 epithelial, 16 immune, one stromal, and one endothelial cell clusters as well as a cluster lacking most markers in the panel. This set, they said, reflects the main cell-type compartments in the prostate. Luminal cells, for instance, were the most abundant cell type, followed by T cells.

There was, the scientists noted, overlap in the cell phenotypes found among tumor and associated benign tissue, though they diverged in their immune landscape and in rare phenotypes present. Two T cell clusters, dubbed TC03 and TC04, representing apoptotic and proliferating T cells, respectively, were enriched among tumor samples, as were two macrophage clusters. They additionally noted that two phenotypes enriched in high-grade patients express CD15, which is involved in cell adhesion and migration and has been implicated in other tumor types as having stem-like potential, suggesting it could be a marker of aggressive disease.

The authors concluded that they had found that tumor and non-tumor regions differed in rare cell types. This made it difficult to employ bulk RNA sequencing in survival analysis as well. Furthermore, they discovered a rare proliferating macrophage and T cell subpopulations as well as an uncommon CD15+ cell type that was enriched in tumor and advanced disease. The study was published on April 19, 2022 in the journal Cell Reports Medicine.

Related Links:
University of Zürich 
Miltenyi Biotech 
Fluidigm 
LeicaBiosystems 


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Varicella Zoster Virus Assay
LIAISON VZV Assay Panel (IgG HT, IgM)
New
UHF RFID Tag & Inlay
AD-327 U9 ETSI Pure 95
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.