We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company


Leica Biosystems develops and supplies cancer diagnostics devices and solutions in the areas of histology, digital pa... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Single-Cell Proteomics of Localized Prostate Cancer Defines Disease Heterogeneity

By LabMedica International staff writers
Posted on 26 Apr 2022
Print article
Image: BOND-MAX Fully Automated IHC and ISH Staining System (Photo courtesy of LeicaBiosystems)
Image: BOND-MAX Fully Automated IHC and ISH Staining System (Photo courtesy of LeicaBiosystems)

Prostate cancer affects about 12.6% of men over the course of their lives, and while most individuals with localized disease can be cured, disease does recur in a small number of patients. The treatment of localized prostate cancer is based on clinicopathological information including Gleason score, prostate-specific antigen (PSA) levels, stage, and patient age.

Several potential biomarkers including gene fusions, mutations, epigenetic heterogeneity, and proteins have been studied. Technological advances in proteomics now allow both exploration of the proteome for biomarkers and assessment of the heterogeneity of biomarker expression. However, analysis of a whole tissue core misses important cell-to-cell variability.

An international team of clinical scientists collaborating with the University of Zürich (Zürich, Switzerland) collected samples from a cohort of 58 prostate cancer patients that included 24 patients with grade II disease, 22 with grade III, and 12 with grade V disease. For 17 patients, they also collected and analyzed adjacent benign prostatic tissue. The single-cell mass cytometry analysis they used relied on a panel of 36 metal-tagged antibodies that recognized surface markers, enzymes, transcription factors, and markers of functional readouts. In all, they analyzed more than 1.67 million cells.

For the dissociation of tissues to single cells, the tissue was minced using surgical scalpels and further disintegrated using the Tumor Dissociation Kit, human)and the gentleMACS Dissociator (Miltenyi Biotech, Bergisch Gladbach, Germany). The team also performed mass cytometry barcoding, antibodies and antibody labeling, antibody staining and mass cytometry data collection and data were acquired on an upgraded Helios CyTOF 2 mass cytometer (Fluidigm, South San Francisco, CA, USA). Automated platforms were used for in situ protein expression analyses of CD15, and CD3 (Leica Bond-Max, LeicaBiosystems, Deer Park, IL, USA).

The investigators fed their data into the Franken computational pipeline, an unsupervised, single-cell clustering approach they developed. Franken identified 55 different cell clusters, which the team organized in a set of 33 metaclusters, consisting of 14 epithelial, 16 immune, one stromal, and one endothelial cell clusters as well as a cluster lacking most markers in the panel. This set, they said, reflects the main cell-type compartments in the prostate. Luminal cells, for instance, were the most abundant cell type, followed by T cells.

There was, the scientists noted, overlap in the cell phenotypes found among tumor and associated benign tissue, though they diverged in their immune landscape and in rare phenotypes present. Two T cell clusters, dubbed TC03 and TC04, representing apoptotic and proliferating T cells, respectively, were enriched among tumor samples, as were two macrophage clusters. They additionally noted that two phenotypes enriched in high-grade patients express CD15, which is involved in cell adhesion and migration and has been implicated in other tumor types as having stem-like potential, suggesting it could be a marker of aggressive disease.

The authors concluded that they had found that tumor and non-tumor regions differed in rare cell types. This made it difficult to employ bulk RNA sequencing in survival analysis as well. Furthermore, they discovered a rare proliferating macrophage and T cell subpopulations as well as an uncommon CD15+ cell type that was enriched in tumor and advanced disease. The study was published on April 19, 2022 in the journal Cell Reports Medicine.

Related Links:
University of Zürich 
Miltenyi Biotech 

Gold Supplier
Chromogenic Medium
CHROMagar Candida Plus
Gold Supplier
Automatic Biochemistry Analyzer
Biossays C8
Automated R-AST Solution
Radian BC
High-Throughput Nucleic Acid Extractor
Stream SP96

Print article


Clinical Chem.

view channel
Image: The analysis pipeline used to investigate associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer’s disease (Photo courtesy of University College London)

Lipid Measurements Show Potential as Alzheimer’s Disease Biomarkers

Brain changes accompanying ageing are varied and can include pathologies that lead to cognitive impairment, the commonest of which is Alzheimer’s disease (AD). Identifying blood-based signatures of brain... Read more

Molecular Diagnostics

view channel
Image: Researchers have identified 10 new genes linked with hearing loss (Photo courtesy of 123rf.com)

Newly Identified Genes May Help to Screen and Treat Individuals with Hearing Loss

A massive genome-wide association study (GWAS) identified 10 novel gene loci associated with hearing loss, which may aid in screening and treating the disorder. Hearing loss is one of the top contributors... Read more


view channel
Image: The CS-2500 analyzer features pre-analytic sample checks and four detection methods simultaneously on a single platform – coagulation end-point, chromogenic kinetic analysis, turbidimetric immunoassay and automated platelet aggregation (Photo courtesy of Sysmex)

Microvascular/Endothelial Dysfunction Contributes to Post-COVID Syndrome Pathogenesis

Post-COVID syndrome (PCS) or Long-COVID is an increasingly recognized complication of acute SARS-CoV-2 infection, characterized by persistent fatigue, reduced exercise tolerance chest pain, shortness of... Read more


view channel
Image: Sales of lateral flow assays in clinical testing are expected to register a CAGR of 5% through 2032 (Photo courtesy of Pexels)

Global Lateral Flow Assays Market to Surpass USD 11.5 Billion by 2032 Due to Evolving Applications

The global lateral flow assays market was valued at USD 7.2 billion in 2021 and is projected to register a CAGR of 4.7% during 2022-2032 to surpass USD 11.7 billion by the end of 2032, driven by the growing... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.