We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Tumor DNA Platform Classifies Colorectal Cancer

By LabMedica International staff writers
Posted on 15 Jan 2020
Print article
Image: Schematic diagram of, circulating tumor DNA (ctDNA); circulating tumor cell (CTC); cell-free DNA (cfDNA) in the peripheral blood stream of a colon cancer patient (Photo courtesy of Oncology Letters)
Image: Schematic diagram of, circulating tumor DNA (ctDNA); circulating tumor cell (CTC); cell-free DNA (cfDNA) in the peripheral blood stream of a colon cancer patient (Photo courtesy of Oncology Letters)
Most colorectal cancers are due to old age and lifestyle factors, with only a small number of cases due to underlying genetic disorders. Some of the inherited genetic disorders that can cause colorectal cancer include familial adenomatous polyposis and hereditary non-polyposis colon cancer; however, these represent less than 5% of cases.

The detection of circulating tumor DNA in the blood is a noninvasive method that may help detect cancer at early stages if the correct markers for evaluation are known. A new machine learning platform can identify patients with colorectal cancer (CRC) and helps predict their disease severity and survival.

Scientists at the Sun Yat-sen University Cancer Center (Guangzhou, China) and their colleagues first identified CRC-specific methylation signatures by comparing CRC tissues to normal blood leukocytes. They then created a diagnostic model based on nine methylation markers associated with colorectal cancer, which they identified by studying plasma samples from 801 patients with colorectal cancer as well as 1,021 controls.

This model accurately distinguished patients from healthy individuals with a sensitivity and specificity of 87.5% and 89.9%, respectively, and outperformed a clinically available blood test named serum carcinoembryonic antigen (CEA). Furthermore, a modified prognostic model helped predict the patients' risk of death over a follow-up period of 26.6 months on average, especially when combined with established clinical characteristics such as tumor location. The team found that a single circulating tumor DNA methylation marker, cg10673833, could yield high sensitivity (89.7%) and specificity (86.8%) for detection of CRC and precancerous lesions in a high-risk population of 1,493 participants in a prospective cohort study.

The authors concluded that they had showed the value of circulating tumor DNA (ctDNA) methylation markers in the diagnosis, surveillance, and prognosis of CRC. The study was published on January 1, 2020 in the journal Science Translational Medicine.

Related Links:
Sun Yat-sen University Cancer Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.