We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Lab Test Detects Persistent HIV Strains in Africa

By LabMedica International staff writers
Posted on 03 Jul 2024
Print article
Image: HIV particles, tiny yellow spheres, are attacking a CD4+ T cell shown in blue (Photo courtesy of Seth Pincus, Elizabeth Fischer and Austin Athman/NIH)
Image: HIV particles, tiny yellow spheres, are attacking a CD4+ T cell shown in blue (Photo courtesy of Seth Pincus, Elizabeth Fischer and Austin Athman/NIH)

Most research on the human immunodeficiency virus (HIV) has concentrated on the virus variants prevalent in Western nations, primarily impacting men who have sex with men, with a focus on subtype B. However, less attention has been given to the variants in Africa, where the virus significantly affects women. To develop a universally effective cure, it's crucial to investigate viral variants not only in developed regions but across different global demographics. Researchers have now developed a test to measure HIV persistence in individuals predominantly affected by African viral strains—a critical step towards finding a cure that can aid patients globally. This research, published in Nature Communications on July 2, addresses a significant shortfall in HIV research.

The findings of the study by a multinational team led by investigators at Weill Cornell Medicine (New York, NY, USA)—similar to findings in the developed world—revealed that African HIV strains form viral reservoirs in the human body. Despite antiretroviral therapy reducing the virus in the bloodstream to nearly undetectable levels, these dormant reservoirs remain intact. They mostly consist of defective proviral DNA genomes incapable of producing new viruses. However, a small number of these proviruses are genetically intact and can produce active viruses if antiretroviral therapy is halted. This high proportion of defective genomes complicates efforts to precisely identify the intact proviruses.

For their study, the team examined DNA from immune cells known as CD4+ T cells, which serve as hiding spots for viral DNA, from 16 women and 7 men undergoing antiretroviral treatment in Uganda. Genetic analysis identified two primary HIV-1 subtypes, A1 and D, the latter known for its aggressive nature, alongside hybrid variants of A1 and D. They adapted existing lab tests, initially designed to detect HIV subtype B, to also identify proviruses of subtypes A1 and D. This innovative test will assist researchers in focusing on the intact proviral genomes that are crucial for curing HIV in patients infected with these less examined strains.

The team, comprising international, multi-institutional researchers, is utilizing this new test to study long-term viral persistence in Uganda. Their findings indicate that the composition of the HIV proviral genomic landscape is broadly comparable between subtypes A1, D, and B. This suggests that finding effective targets within HIV reservoirs in Africa presents similar challenges to those found in North America and Europe. Future research will need to consider how factors specific to non-B subtypes might influence the persistence, reactivation, or clearance of the virus in these reservoirs.

“We are looking for a needle in a haystack: To achieve an HIV cure, we need to first find out whether any genome-intact proviruses remain in the body during antiretroviral treatment. Our new assay allows us to do this. Then we need to target and eliminate the intact DNA capable of producing new viruses,” said lead author Dr. Guinevere Lee, assistant professor of virology in medicine in the Division of Infectious Diseases and assistant professor of microbiology and immunology at Weill Cornell Medicine.

Related Links:
Weill Cornell Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.