We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Lab Test Detects Persistent HIV Strains in Africa

By LabMedica International staff writers
Posted on 03 Jul 2024

Most research on the human immunodeficiency virus (HIV) has concentrated on the virus variants prevalent in Western nations, primarily impacting men who have sex with men, with a focus on subtype B. More...

However, less attention has been given to the variants in Africa, where the virus significantly affects women. To develop a universally effective cure, it's crucial to investigate viral variants not only in developed regions but across different global demographics. Researchers have now developed a test to measure HIV persistence in individuals predominantly affected by African viral strains—a critical step towards finding a cure that can aid patients globally. This research, published in Nature Communications on July 2, addresses a significant shortfall in HIV research.

The findings of the study by a multinational team led by investigators at Weill Cornell Medicine (New York, NY, USA)—similar to findings in the developed world—revealed that African HIV strains form viral reservoirs in the human body. Despite antiretroviral therapy reducing the virus in the bloodstream to nearly undetectable levels, these dormant reservoirs remain intact. They mostly consist of defective proviral DNA genomes incapable of producing new viruses. However, a small number of these proviruses are genetically intact and can produce active viruses if antiretroviral therapy is halted. This high proportion of defective genomes complicates efforts to precisely identify the intact proviruses.

For their study, the team examined DNA from immune cells known as CD4+ T cells, which serve as hiding spots for viral DNA, from 16 women and 7 men undergoing antiretroviral treatment in Uganda. Genetic analysis identified two primary HIV-1 subtypes, A1 and D, the latter known for its aggressive nature, alongside hybrid variants of A1 and D. They adapted existing lab tests, initially designed to detect HIV subtype B, to also identify proviruses of subtypes A1 and D. This innovative test will assist researchers in focusing on the intact proviral genomes that are crucial for curing HIV in patients infected with these less examined strains.

The team, comprising international, multi-institutional researchers, is utilizing this new test to study long-term viral persistence in Uganda. Their findings indicate that the composition of the HIV proviral genomic landscape is broadly comparable between subtypes A1, D, and B. This suggests that finding effective targets within HIV reservoirs in Africa presents similar challenges to those found in North America and Europe. Future research will need to consider how factors specific to non-B subtypes might influence the persistence, reactivation, or clearance of the virus in these reservoirs.

“We are looking for a needle in a haystack: To achieve an HIV cure, we need to first find out whether any genome-intact proviruses remain in the body during antiretroviral treatment. Our new assay allows us to do this. Then we need to target and eliminate the intact DNA capable of producing new viruses,” said lead author Dr. Guinevere Lee, assistant professor of virology in medicine in the Division of Infectious Diseases and assistant professor of microbiology and immunology at Weill Cornell Medicine.

Related Links:
Weill Cornell Medicine


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.