We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Accurate Blood Test for Detecting Malignant Brain Tumors Could Help Patients Avoid Risky Surgery

By LabMedica International staff writers
Posted on 19 Feb 2024
Print article
Image: Glioblastoma cells (Photo courtesy of Imperial College London)
Image: Glioblastoma cells (Photo courtesy of Imperial College London)

Globally, brain tumors comprise 85%-90% of all primary central nervous system (CNS) tumors, representing approximately 300,000 cases (1.6%) out of the total 19,300,000 annual cancer incidences. They also account for around 250,000 (2.5%) of the total 10,000,000 annual cancer-related deaths. Presently, the standard of care (SoC) for diagnosing intracranial space-occupying lesions (ICSOL) involves histopathological evaluation (HPE) of tumor tissue specimens, which are typically obtained through surgical excision or biopsy. However, surgical resection or biopsy can be particularly challenging for patients with poor performance status, comorbidities, or reluctance to undergo invasive procedures. These procedures carry well-documented risks, including pain, discomfort, intracranial hemorrhage, cerebral edema, infections, and even morbidity and mortality. Now, a simple blood test could help diagnose patients with brain tumors, saving them from undergoing invasive, highly risky surgery.

In a world-first, researchers at Imperial College London (London, UK) have proved a new technique for glial tumors including glioblastoma (GBM), the most commonly diagnosed type of high-grade brain tumor in adults. The TriNetra-Glio blood test works by isolating tumor cells that have detached from the tumor and are circulating in the blood. Once isolated, these cells are stained and can be examined under a microscope. This test could mark a significant advancement for patients with suspected high-grade gliomas, such as GBM, astrocytomas, and oligodendrogliomas, offering earlier tumor-type diagnosis, accelerated treatment, and potentially improved survival rates. Notably, it could also eliminate the need for surgical biopsies, which pose significant risks, especially for patients with pre-existing health conditions.

“A non-invasive, inexpensive method for the early detection of brain tumors is critical for improvements in patient care,” said Imperial's Dr Nelofer Syed (Department of Brain Sciences), who leads the Centre. “Through this technology, a diagnosis of inaccessible tumors can become possible through a risk-free and patient-friendly blood test. We believe this would be a world-first as there are currently no non-invasive or non-radiological tests for these types of tumors.”

Related Links:
Imperial College London

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
PSA Test
Humasis PSA Card
New
Amoebiasis Test
ELI.H.A Amoeba

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.