We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New Method Identifies Viruses in Tumors in Routine Clinical Genomic Sequencing Assay

By LabMedica International staff writers
Posted on 09 May 2022
Print article
Image: New virus identification method could resolve diagnostic challenges (Photo courtesy of Pexels)
Image: New virus identification method could resolve diagnostic challenges (Photo courtesy of Pexels)

Viruses commonly transfer from normal human cells to malignant cells in solid tumors. However, virus detection is limited in current clinical practice. Universal screening of viruses is not technically or fiscally viable because current standard of care techniques are uniplex, costly, and have challenging workflows. Researchers have now developed a method to accurately detect viruses from clinical next-generation sequencing and describe novel associations between specific tumors and viruses that warrant further investigation. This information makes it more feasible to consider viral status in treatment protocols.

Researchers at Memorial Sloan Kettering Cancer Center (New York, NY, USA) have developed a digital subtraction technique, which deletes human genome cells from sequencing analysis to identify the presence of viral DNA as a quality assurance (QA) process. This bioinformatic technique requires no additional sequencing, and virus detection can be achieved with minimal additional cost. Their results were comparable to standard clinical methods for tumor virus identification.

The study is the largest and most comprehensive study of human DNA virus detection in cancer. It used data gathered from January 2014 to October 2020 from 48,148 solid tumors sequenced by a US Food and Drug Administration–cleared tumor profiling assay for patients with advanced solid tumors. A BLAST (basic local alignment search tool) algorithm compared the non-human (unmapped) sequencing reads present in the tumors against all human viruses from the National Center for Biotechnology Information Virus database. Researchers cross-validated their results with multiple methods across tumor types and virus species and found their method has comparable sensitivity for detecting high risk human papilloma viruses (HPV) and Epstein Barre virus (EBV) to clinically validated in situ hybridization and amplification methods.

Investigators then extended the analysis to discover novel tumor-virus associations. Previously unreported associations between human herpes virus (HHV)6 in neuroblastoma and HHV7 in esophagogastric cancer were validated using an independent dataset. They also found a new association between HPV42 and digital papillary adenocarcinoma. In comparison to performing laborious single virus discovery assays, having access to data for discovery by data analysis alone allows resources to be dedicated to investigating the role that viruses might play in oncogenesis and for consideration of virus-informed therapies.

“We decided to look at tumor types that are commonly associated with a virus, and in almost all cases, the QA tool detected the virus we expected,” explained lead investigator Chad M. Vanderbilt, MD, Department of Pathology, and Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. “With this encouraging finding, we decided to refine the method as a microbiome detection pipeline and extend the analysis to see how well the method works for detecting clinically relevant viruses and discovering unexpected virus-tumor relationships.”

“The findings of this project further support the relevance of studying the role of the microbiome in disease, while the method used in this study is portable to smaller laboratories,” said co-investigator Anita S. Bowman, MS, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. “In the fast-paced world of oncology, effectively identifying these tumor-virus relationships adds to the collective knowledgebase and may also lead to improved therapeutic options. Ultimately, understanding tumorigenesis after a viral infection will help to attain our shared goal of saving lives.”

Related Links:
Memorial Sloan Kettering Cancer Center 

Gold Supplier
SARS-CoV-2 Multiplex Real-Time RT-PCR Assay
GSD NovaPrime Plus SARS-CoV-2
New
Automated Nucleic Acid Extraction System
NuActor
New
Microplate Washer
STAT FAX 2600
New
Gold Supplier
Immunofluorescence Incubator
RaFIA Immunofluorescence Incubator

Print article

Channels

Clinical Chem.

view channel
Image: The analysis pipeline used to investigate associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer’s disease (Photo courtesy of University College London)

Lipid Measurements Show Potential as Alzheimer’s Disease Biomarkers

Brain changes accompanying ageing are varied and can include pathologies that lead to cognitive impairment, the commonest of which is Alzheimer’s disease (AD). Identifying blood-based signatures of brain... Read more

Hematology

view channel
Image: The CS-2500 analyzer features pre-analytic sample checks and four detection methods simultaneously on a single platform – coagulation end-point, chromogenic kinetic analysis, turbidimetric immunoassay and automated platelet aggregation (Photo courtesy of Sysmex)

Microvascular/Endothelial Dysfunction Contributes to Post-COVID Syndrome Pathogenesis

Post-COVID syndrome (PCS) or Long-COVID is an increasingly recognized complication of acute SARS-CoV-2 infection, characterized by persistent fatigue, reduced exercise tolerance chest pain, shortness of... Read more

Industry

view channel
Image: Sales of lateral flow assays in clinical testing are expected to register a CAGR of 5% through 2032 (Photo courtesy of Pexels)

Global Lateral Flow Assays Market to Surpass USD 11.5 Billion by 2032 Due to Evolving Applications

The global lateral flow assays market was valued at USD 7.2 billion in 2021 and is projected to register a CAGR of 4.7% during 2022-2032 to surpass USD 11.7 billion by the end of 2032, driven by the growing... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.