We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
27 Oct 2020 - 31 Oct 2020
Virtual Venue
28 Oct 2020 - 30 Oct 2020
Virtual Venue

Bacteriophage Analysis Technique Reveals Details of COVID-19’s Impact on the Immune System

By LabMedica International staff writers
Posted on 06 Oct 2020
Print article
Image: This illustration reveals the ultrastructural morphology exhibited by coronaviruses. Note the protein spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed through an electron microscope (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)
Image: This illustration reveals the ultrastructural morphology exhibited by coronaviruses. Note the protein spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed through an electron microscope (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)
An analytical technique that can determine which of more than 1,000 different viruses have infected a person, has been utilized for a detailed study of the SARS-CoV-2 (COVID-19) virus and its impact on the immune system.

Investigators at Harvard Medical School (Boston, MA, USA) worked with VirScan, a technology in which peptide-displaying bacteriophages were incubated with a single drop of patient’s blood. Antiviral antibodies in the blood bound to their target epitopes on the bacteriophages. Antibody bound bacteriophages were then captured. DNA sequencing of these bacteriophages indicated which viral peptides were bound to antibodies. In this way, an individual’s complete viral serological history, including both vaccination and infection, could be determined.

For the current study, the investigators used VirScan to analyze blood samples from 232 COVID-19 patients and 190 pre-COVID-19 era controls.

Results revealed over 800 epitopes (sites recognized by the immune system) in the SARS-CoV-2 proteome, including 10 epitopes likely recognized by neutralizing antibodies. Pre-existing antibodies in control samples recognized SARS-CoV-2 ORF1, while only COVID-19 patients primarily recognized spike and nucleoprotein. A machine learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and 98% specificity.

Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2 responses, weaker antibody responses to prior infections, and higher incidence of CMV (Cytomegalovirus) and HSV-1 (Herpes simplex virus 1). Among hospitalized patients, males had greater SARS-CoV-2 antibody responses than females.

"This may be the deepest serological analysis of any virus in terms of resolution," said senior author Dr. Stephen Elledge, professor of genetics at Harvard Medical School. "We now understand much, much more about the antibodies generated in response to SARS-CoV-2 and how frequently they are made. The next question is, what do those antibodies do? We need to identify which antibodies have an inhibitory capacity or which, if any, may promote the virus and actually help it enter into immune cells."

"Our paper illuminates the landscape of antibody responses in COVID-19 patients," said Dr. Elledge. "Next, we need to identify the antibodies that bind these recurrently recognized epitopes to determine whether they are neutralizing antibodies or antibodies that might exacerbate patient outcomes. This could inform the production of improved diagnostics and vaccines for SARS-CoV-2."

The VirScan analysis of COVID-19 was published in the September 29, 2020, online edition of the journal Science.

Related Links:
Harvard Medical School


Print article
BIOHIT  Healthcare OY

Channels

Industry News

view channel
Image: Mindray Hematology Solution Helps High-Volume Lab Run 2,820,000 CBC Tests Annually (Photo courtesy of Mindray)

Mindray Hematology Solution Helps High-Volume Lab Run 2,820,000 CBC Tests Annually

High-volume laboratories face several challenges, including high instrument failure rate, errors due to several manual steps, low efficiency and long TAT, and heavier workload for the lab staff.... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.