Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Yeast-Based Tool Developed for Pathogen Detection

By LabMedica International staff writers
Posted on 13 Jul 2017
The monitoring of global pathogen burden has been traditionally limited to a small number of specialized centers, but more effective detection could be performed in real time by making accurate diagnostics accessible at the point of care.

A tool has been created that is an extremely low-cost, low-maintenance, on-site dipstick test that will aid in the surveillance and early detection of fungal pathogens responsible for major human diseases. More...
The emerging field of synthetic biology has the potential to provide novel diagnostic platforms to overcome global health challenges – much like advances in molecular biology gave rise to antibody diagnostics.

Scientists at Columbia University (New York, NY, USA) and their colleagues swapped out naturally occurring cell surface receptors of Saccharomyces cerevisiae, or baker's yeast, with pathogen-specific receptor proteins. They started by building a biosensor for the detection of Candida albicans, a human fungal pathogen, that occurs naturally in the human gut, but can cause serious medical problems and even death if the population gets out of control.

After replacing S. cerevisiae natural receptor with that of C. albicans, the team then altered its DNA to enable production of lycopene, the pigment responsible for the red coloring of tomatoes. This allowed the engineered yeast to turn red when in the presence of a target molecule, in this case, C. albicans fungus pheromones. The scientists successfully tested their assay for the ability to detect ten additional major pathogens, including Paracoccidioides brasiliensis, a fungus responsible for a progressive tropical disease affecting the mucosa in the nose, sinuses and skin. In each case, the test functioned accurately without sacrificing any of the sensitivity and specificity attainable with other, significantly more expensive tests.

Virginia Cornish, PhD, a chemist and the principle investigator of the study, said, “We can now alter the DNA of S. cerevisiae to give it new functions that make it useful for a variety of applications. The prospect of using this technology in rural communities with little access to high-tech diagnostics is particularly compelling. The possibilities, as we see it right now, are limitless. We've just opened the door to this exciting new technology. It's the beginning of a journey rich with potential.” The study was published on June 28, 2017, in the journal Science Advances.

Related Links:
Columbia University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.