We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Rapid Assay Identifies Genetic Mutations Associated with NSCLC

By LabMedica International staff writers
Posted on 01 May 2017
Print article
Image: A new blood-based assay enables rapid identification of specific genetic mutations in patients with non-small-cell lung cancer (NSCLC), which helps clinicians select the best treatment option (Photo courtesy of Biodesix).
Image: A new blood-based assay enables rapid identification of specific genetic mutations in patients with non-small-cell lung cancer (NSCLC), which helps clinicians select the best treatment option (Photo courtesy of Biodesix).
A rapid blood-based diagnostic assay is now available to identify genetic mutations associated with non-small-cell lung cancer (NSCLC), which is the first step in establishing personalized treatment for the patient.

Nearly 80% of cancer patients do not have genetic mutation results available at initial oncology consultation; up to 25% of patients begin treatment before receiving their results. Lack of this information hinders the ability to pursue optimal treatment strategies.

To repair this lack, a new assay system that determines circulating tumor DNA mutations and RNA variants in whole blood has been developed by the biotechnology firm Biodesix, Inc. The test is specific for NSCLC where certain genetic mutations can be used to identify patients who might be sensitive or resistant to a particular cancer therapy. For example, epidermal growth factor (EGFR) mutations may result in sensitivity to drugs that are EGFR tyrosine kinase inhibitors (TKIs), such as erlotinib or gefitinib, whereas individuals with the EGFR T790M mutation are more resistant to these drugs. Patients with ALK rearrangements do not respond to EGFR-TKIs, but are sensitive to other targeted therapies (such as ceretinib).

During the development phase, the assay was used to test samples from 219 donors with cancer and from 30 normal control subjects. Of the more than 1,600 samples tested, 10.5% had EGFR sensitizing, 18.8% EGFR resistance, 13.2% KRAS, and 2% EML4-ALK (anaplastic lymphoma kinase) mutations. The test demonstrated high sensitivity (greater than 80%) and specificity (100%) for detecting each type of mutation. Mutation results were available within 72 hours for 94% of the tests, and in most cases, blood tests and tissue biopsies yielded the same results.

"This study is critical because it is the first to demonstrate the uptake of blood-based testing for actionable mutations in the non-hospital (community) setting. Physicians and patients in a community setting may not have easy access to a large hospital or other diagnosis/treatment facility. This assay provides results within 72 hours from sample receipt," said senior author Dr. Gary A. Pestano, vice president of development and operations at Biodesix, Inc. "The described assay can detect actionable mutations in patients diagnosed with earlier stages of NSCLC, thereby improving clinical outcomes."

The study was published in the May 2017 issue of The Journal of Molecular Diagnostics.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.