We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Long Non-Coding RNAs Linked to Development and Progression of Prostate Cancer

By LabMedica International staff writers
Posted on 25 Aug 2016
Cancer researchers have found a link between a number of long non-coding RNAs and the development and progression of prostate cancer.

Long non-coding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. More...
This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.

Investigators at the University Health Network (Toronto, Canada) and the University of Toronto (Canada) combined integrative analysis of the lncRNA transcriptome with genomic data and SNP (single nucleotide polymorphism) data from prostate cancer genome-wide association studies (GWAS) to identify 45 candidate lncRNAs associated with risk of prostate cancer.

They reported in the August 15, 2016, online edition of the journal Nature Genetics that their top hit, the lncRNA PCAT1, promoted prostate cancer cell proliferation and tumor growth in vitro and in vivo.

"Non-coding RNA has many functions and in this study we found that PCAT1 functions as a kind of glue to attract different protein complexes together and guide them to specific genomic location to activate their target gene expression that starts the disease process," said senior author Dr. Housheng Hansen He, assistant professor of medical biophysics at the University of Toronto. "Cancer is very smart to take every possible way to survive and use every piece of our genome. If research only focuses on the 2% of the genome that is the protein- coding genes, we will have limited understanding of how the cancer can survive. We cannot achieve personalized cancer medicine without understanding the other 98% of our genome."

Related Links:
University Health Network
University of Toronto

Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Simoa p-Tau 217 research assay measures phosphorylated tau in blood (Photo courtesy of Quanterix)

Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology

Accurately estimating how many people carry Alzheimer’s disease pathology has long been a challenge, as traditional methods rely on small, clinic-based samples rather than the general population.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.