We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Simple PCR Assay Accurately Differentiates Between Small Cell Lung Cancer Subtypes

By LabMedica International staff writers
Posted on 08 Apr 2024
Print article
Image: Lung EpiCheck is a simple blood test that detects lung tumor DNA circulating in the blood (Photo courtesy of Nucleix)
Image: Lung EpiCheck is a simple blood test that detects lung tumor DNA circulating in the blood (Photo courtesy of Nucleix)

Small cell lung cancer (SCLC), a rapidly progressing neuroendocrine malignancy, exhibits low survival rates. Despite its molecular and clinical heterogeneity, SCLC is presently treated as a single entity, without the use of predictive biomarkers, which leads to poor patient outcomes. Recent research has proposed dividing SCLC into four subtypes—labeled "A", "N", "P", and "I"—each characterized by distinct molecular signatures and treatment vulnerabilities. Initially, this classification relied on gene expression (RNA-seq) data. Further studies indicated that the same categorization could be recapitulated through the use of a reduced-representation bisulfite sequencing (RRBS) methylation profile. Although this classification system effectively predicts treatment responses, including to immunotherapy, in retrospective analyses, both RNAseq and RRBS techniques are too labor-intensive and slow for quick treatment decisions in an aggressive malignancy. Now, a pilot study published in the journal Cancer Cell has demonstrated the feasibility of a simple PCR assay to accurately differentiate between SCLC SCLC subtypes.

In the pilot study, Nucleix (San Diego, CA, USA) developed a methylation-based PCR assay to distinguish SCLC subtypes using its EpiCheck platform. This technology combines methylation-sensitive restriction endonuclease (MSRE) digestion with quantitative PCR (qPCR) amplification to identify differential methylation at the DNA level. Nucleix developed the 13-marker PCR assay based on a recent study that used DNA methylation to successfully detect SCLC in plasma samples from heavy smokers—with a sensitivity of 94% and specificity of 95%. The company developed novel biomarkers to classify SCLC into subtypes, aiming to reduce the time between diagnosis and tailored treatment interventions. The 13-marker PCR assay accurately classified 97% of the SCLC tissue samples within a blinded cohort in the pilot study.

“For decades, SCLC was considered a single, monolithic entity resulting in our current clinical protocols being based on disease stage, with no consideration of biomarkers that have predictive or prognostic significance, leading to expectedly poor outcomes,” said Mathias Ehrich, M.D., chief scientific officer. “These data show that we can potentially reduce the time between patient diagnosis and initiation of tailored treatment or inclusion in clinical studies from a month, in best-case scenarios, to just a few days, by using our PCR EpiCheck-based assay for the classification of SCLC subtypes.”

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Hematology Analyzer
BH-6180
New
Epstein-Barr Virus Test
ZEUS IFA Epstein-Barr Virus VCA IgG Test

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Pathology

view channel
Image: The technique predicts how well some breast cancer patients will respond to chemotherapy (Photo courtesy of Shutterstock)

New Technique Predicts Tumor’s Responsiveness to Breast Cancer Treatment

Breast cancer is the most common cancer among women worldwide, with 2.3 million new cases diagnosed each year. In the era of personalized medicine, targeted therapies for different types of breast cancer... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.