We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Outperforms Pathologists in Diagnosing Breast Cancer

By LabMedica International staff writers
Posted on 20 Dec 2017
A study comparing the ability of Artificial Intelligence (AI) algorithms with expert pathologists in detecting metastatic breast cancer in whole-slide images found that the machine learning outperformed the pathologists. More...
The results of the study published in the Journal of the American Medical Association suggests that deep learning algorithms have the ability to improve diagnosis and could be used to help clinicians detect cancer in the clinic.

The study pitted 11 pathologists with time constraints and one pathologist without time constraints against seven deep learning algorithms in analyzing a training data set of whole-slide images – 110 with and 160 without verified nodal metastases. Out of the 49 test slides with metastatic disease, the pathologists found 31 on an average, while the pathologist allowed to work without time constraint correctly identified 46 out of 49 slides with cancer and 79 out of 80 slides without cancer.

Among the seven deep learning algorithms, the best algorithm performed significantly better in the whole-slide image classification task as compared to the pathologists working with time constraints. The mean performance of the top five algorithms was comparable with that of the single pathologist working without time constraints. However, at a mean of 0.0125 false-positives per normal whole-slide image, the performance of the best-performing algorithm was comparable with that of the single pathologist working without time constraint.

The research was led by Babak Ehteshami Bejnordi, Radboud University Medical Centre Nijmegen in the Netherlands. The researchers concluded that while the findings suggested the potential utility of deep learning algorithms for pathological diagnosis, it required further assessment in a clinical setting.


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
Silver Member
Rapid Test Reader
DIA5000
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.