We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Elevated Metal Ion Level Detects Defective Hip Arthroplasty Implants

By LabMedica International staff writers
Posted on 26 May 2020
Print article
Image: The Element 2 High Resolution, Sector-Field, Inductively Coupled Plasma Mass Spectrophotometer (HR-ICP-MS) (Photo courtesy of Thermo Fisher Scientific).
Image: The Element 2 High Resolution, Sector-Field, Inductively Coupled Plasma Mass Spectrophotometer (HR-ICP-MS) (Photo courtesy of Thermo Fisher Scientific).
Total hip replacement (THR) has proven to be a highly effective treatment of degenerative joint disease. Hip replacement implants can be made of different metallic alloys according to their specific properties and the related clinical need.

Metal ions from these alloys will be systematically released due to the bearing wear, taper junction wear/corrosion or passive surface corrosion. Performance of each implant can be assessed indirectly by measuring systemic ion levels in whole blood.

Medical Laboratory Scientists at the Maisonneuve-Rosemont Hospital (Montreal, QC, Canada) collected 71 whole blood samples were collected from 64 patients with unilateral ceramic-on-ceramic hip arthroplasty. For each patient, two whole blood samples were collected and analyzed in two different laboratories.

The investigators analyzed 71 pairs of whole blood samples from 64 patients. Patient’s mean age at time of surgery was 54 years old (range 33–73; ± 9.2), 26 men and 38 women. In one laboratory the concentrations of titanium (Ti), Chromium-cobalt (Cr and Co) ions in whole blood samples were measured with a single quadrupole ICP-MS Elan DRCII (PerkinElmer, Waltham, MA, USA). The detection limits were 0.1 μg/L for Cr and 0.035 μg/L for Co. In the other laboratory the concentrations of Ti, Cr and Co ions in the whole blood samples were measured in an Element 2 High Resolution, Sector-Field, Inductively Coupled Plasma Mass Spectrophotometer (HR-ICP-MS, Thermo Fisher Scientific GmBH, Bremen, Germany). The detection limits were 0.1 μg/L for Cr and 0.02 μg/L for Co.

The scientists reported that the for distributions of Ti concentrations from the two laboratories there was no distinction for the direction of the difference in Ti concentration (minus or positive) since 100% of results from laboratory 1 were higher than laboratory 2. The concentrations obtained from laboratory 1 are significantly different from those of laboratory 2. The average ratio between laboratories (#1 divided by #2) is 4.10 (range 1–20.76). In 69% of cases the difference was above 300%, and in 39% above 500%. The team found that 64/71 (90%) of paired samples had an absolute difference above the predetermined threshold of 1 μg/L. A mean variation ratio of 410% between the two laboratories was found.

The authors concluded that metal ions blood screening is a common way of detecting mal-functioning orthopedic implants. However, all laboratories do not use the same technologies or calibrations to do these measurements. Different laboratories leading to a significant risk of misinterpretation can measure clinically significant level difference. Therefore, clinical decision should not rely on a single measurement made by one laboratory. The study was published on May 8, 2020 in the journal Practical Laboratory Medicine.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.