We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Combined Proteomic/Genomic Method Detects Early Signs of Pancreatic Cancer

By LabMedica International staff writers
Posted on 29 Jul 2020
A new method that utilized a combined proteomic and genomic approach for profiling serum proteins in solution demonstrated high accuracy for distinguishing samples derived from pancreatic cancer patients and those from healthy controls.

The composition of proteins in the blood serum reflects the current health status of the individual and can, with the right tools, be used to detect early signs of disease, such as an emerging cancer. More...
As the World Health Organization (WHO) has projected that a third of all cancers could be cured if diagnosed already at tumor stage I/II, early diagnosis of cancer would greatly increase the chance of an improved outcome for the patients.

In this regard, investigators at Lund University (Sweden) and colleagues at the biomedical company Immunovia AB (Lund, Sweden) developed a method that combined the specificity of antibodies with the sensitivity of next-generation sequencing (NGS).

This ProMIS technique (Protein detection using Multiplex Immunoassay in Solution) is a streamlined platform for profiling of serum proteins with a solution-based bead array. The assay utilizes antibody fragments (scFv) that were site specifically conjugated to DNA oligonucleotide barcodes, in a 1:1 manner, using a Sortase A-mediated coupling strategy. The barcoded scFvs were mixed with biotinylated serum proteins coupled to streptavidin-coated magnetic beads, and bound antibodies were detected, using NGS allowing for both a multiplex and sensitive read-out.

By working with proteins in solution, the new technique circumvented the inherent technical problems found in conventional biomarker research that utilizies biomatrices, such as. planar- or bead-based arrays.

"We have for years been developing advanced diagnostic approaches for multiplexed analysis of serum proteins, using a single drop of blood, for the purpose of early diagnosis of complex disease, in particular cancer. There is massive amount of information in blood and our combination of proteomics and genomics will open up for rapidly associating early tumor development with protein signatures. This in turn will benefit the patients with a more favorable outcome and overall survival. We are very excited with this novel next generation of biomarker discovery tool," said senior author Dr. Carl Borrebaeck, professor of immunotechnology at Lund University.

The ProMIS technique was described in the July 3, 2020, online edition of the journal Nature Communication Biology.

Related Links:
Lund University
Immunovia AB




Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Portable Electronic Pipette
Mini 96
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.