We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cardiomyocytes Derived from Human Pluripotent Cells Function as Pacemakers in Rodent Model

By LabMedica International staff writers
Posted on 28 Dec 2016
Print article
A team of Canadian heart disease researchers has converted human pluripotent stem cells into fully functional heart pacemaker cells and demonstrated their performance in a rodent model.

The sinoatrial node (SAN), which is located in the myocardial wall near where the sinus venarum joins the right atrium, is the primary pacemaker of the heart and controls heart rate throughout life. Failure of SAN function due to congenital disease or aging results in slowing of the heart rate and inefficient blood circulation, a condition treated by implantation of an electronic pacemaker. The ability to produce pacemaker cells in vitro could lead to an alternative, biological pacemaker therapy in which the failing SAN is replaced through cell transplantation.

In working towards this goal, investigators at the McEwen Centre for Regenerative Medicine (Toronto, Canada) devised a three-week long protocol using specific growth factors to coax stem cells into differentiating into pacemaker cells (NKX2-5 cardiomyocytes).

The differentiated pacemaker cells expressed markers of the SAN lineage and displayed typical pacemaker action potentials, ion current profiles, and chronotropic responses. The investigators reported in the December 12, 2016, online edition of the journal Nature Biotechnology that when transplanted into the apex of rat hearts, the NKX2-5 cardiomyocytes were able to pace the host tissue, demonstrating their capacity to function as a biological pacemaker.

"What we are doing is human biology in a petri dish," said senior author Dr. Gordon Keller, director of the McEwen Centre for Regenerative Medicine, the senior author, and professor of medical biophysics at the University of Toronto (Canada). "We are replicating nature's way of making the pacemaker cell.

We understand the importance of precision in developmental biology in setting out the process by which organisms grow and develop. We use that same precision in the petri dish because we are replicating these same processes."

Related Links:
McEwen Centre for Regenerative Medicine
University of Toronto

Flocked Swab
HydraFlock and PurFlock Ultra
Gold Supplier
Automated, Random Access Chemistry Analyzer
LIDA 300
New
HLA-B27 Real Time PCR Test
RIDA GENE HLA-B27
New
Gold Supplier
CLIA Analyzer
VIRCLIA

Print article

Channels

Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Hematology

view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more

Immunology

view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more

Microbiology

view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more

Pathology

view channel
Image: The UNIQO 160 (CE-IVDR) advances diagnostic analysis for autoimmune diseases (Photo courtesy of EUROIMMUN)

Novel Automated IIFT System Enables Cutting-Edge Diagnostic Analysis

A newly-launched automated indirect immunofluorescence test (IIFT) system for autoimmune disease diagnostics offers an all-in-one solution to enhance the efficiency of the complete IIFT process, comprising... Read more

Technology

view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more

Industry

view channel
Image: The Coris acquisition provides Avacta with a broad, professional-use rapid test product portfolio (Photo courtesy of Coris Bioconcept)

Avacta Expands Diagnostics Portfolio with Acquisition of Rapid Test Maker Coris Bioconcept

Avacta Group plc (London, UK), a life sciences company developing oncology drugs and diagnostics, has acquired Coris Bioconcept SRL (Gembloux, Belgium) for an upfront cash consideration of GBP 7.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.