We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blood Test Identifies Individuals at Risk of Developing Parkinson’s Disease Before Symptoms Occur

By LabMedica International staff writers
Posted on 06 Dec 2023
Print article
Image: A new blood-based test identifies the pathology that triggers Parkinson’s disease before symptoms occur (Photo courtesy of 123RF)
Image: A new blood-based test identifies the pathology that triggers Parkinson’s disease before symptoms occur (Photo courtesy of 123RF)

Parkinson's disease is the second most prevalent neurodegenerative disorder globally, affecting seven million individuals, with projections indicating a potential doubling of cases by 2040. A significant challenge in conducting clinical trials for disease modification is identifying individuals in the earliest stages of disease development and excluding those with similar symptomatology but different conditions. Parkinson's disease begins more than a decade before symptoms become clinically evident, which can be attributed to brain cells' inability to process a small protein known as alpha-synuclein. This dysfunction leads to the formation of abnormal alpha-synuclein clusters that harm susceptible nerve cells, resulting in the well-known movement disorder and frequently dementia. By the time of diagnosis, most of these sensitive nerve cells have perished, and alpha-synuclein aggregates are present in numerous brain regions. A predictive method for identifying impairments in alpha-synuclein pathways before Parkinson’s symptoms occur would be invaluable, aiding clinicians in identifying individuals who might benefit most from upcoming disease-modifying treatments.

At the University of Oxford (Oxford, UK), researchers have developed a novel blood test capable of detecting Parkinson’s disease pathology before the onset of its primary symptoms. This advancement paves the way for early identification of individuals at heightened risk of developing the disease, thereby facilitating the prompt application of precision therapies currently under clinical investigation. The study highlights the potential of measuring a specific subtype of extracellular vesicles to identify changes in alpha-synuclein in individuals predisposed to Parkinson's disease. Extracellular vesicles, nanoparticles released by all cell types and present in various biofluids including blood, transport molecular signals between cells. Employing a refined antibody-based assay created by the research team, the test isolates nerve cell-derived extracellular vesicles from blood samples, measuring their alpha-synuclein content.

In this pioneering study, the research team examined 365 at-risk individuals from four clinical cohorts, 282 healthy controls, and 71 individuals with either genetic or sporadic Parkinson's disease. The study revealed that those with the highest Parkinson’s risk (over 80% probability based on research criteria) exhibited a twofold increase in alpha-synuclein within neuronal extracellular vesicles. The test successfully differentiated these individuals from low-risk and healthy controls. It could distinguish a high-risk individual from a healthy control with 90% probability. This suggests that the blood test, combined with limited clinical assessment, could effectively screen and identify high-risk individuals. The test could also identify individuals who had evidence of neurodegeneration detected by imaging, or pathology detected by a spinal fluid assay, but were yet to develop a movement disorder or dementia

In a smaller subgroup of 40 people who eventually developed Parkinson’s and related dementia, the blood test was positive in over 80% of cases up to seven years prior to diagnosis. This group showed a correlation between higher blood alpha-synuclein levels in neuronal extracellular vesicles, lower spinal fluid alpha-synuclein levels, and a longer duration before the emergence of main Parkinson's symptoms. This implies that nerve cells might protect themselves by packaging excess alpha-synuclein in extracellular vesicles, subsequently released into the blood. Building on prior research by the same team, the current study confirms that this biomarker is elevated in Parkinson’s patients but not in other conditions with Parkinson's-like symptoms. The researchers had earlier outlined the pathway targeting alpha-synuclein for degradation within nerve cells. This pathway might also channel alpha-synuclein outside cells in extracellular vesicles, particularly when intracellular protein turnover is compromised in conditions like aging and Parkinson’s disease.

“Collectively our studies demonstrate how fundamental investigations in alpha-synuclein biology can be translated into a biomarker for clinical application, in this case for the identification and stratification of Parkinson’s risk,” said Professor George Tofaris. “A screening test that could be implemented at scale to identify the disease process early is imperative for the eventual instigation of targeted therapies as is currently done with screening programs for common types of cancer.”

Related Links:
University of Oxford 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Dengue Test
Lab Rapid Dengue NS1
New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate Arc System has been granted US FDA 510(k) clearance (Photo courtesy of Accelerate Diagnostics)

Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR

Delayed administration of antibiotics to patients with bloodstream infections significantly increases the risk of morbidity and mortality. For optimal therapeutic outcomes, it is crucial to rapidly identify... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: Last year, Seegene and Werfen has entered into a collaboration on the OneSystem business to develop syndromic qPCR assays (Photo courtesy of Seegene)

Seegene and Werfen Finalize Partnership Agreement on Technology-Sharing Initiative

Seegene (Seoul, South Korea), a leading PCR molecular diagnostics company, and Werfen (Barcelona, Spain), a global diagnostics specialist, have finalized a partnership agreement as part of a technology-sharing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.