We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

By LabMedica International staff writers
Posted on 16 Apr 2024
Print article
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective of whether mutations are present. Researchers have identified various signature patterns of gene activation in SCLC, and these subtypes dictate how the cancer responds to treatments and its specific vulnerabilities. There is a significant need for blood-based tests that can determine SCLC subtypes, track disease progression, recognize transformations into other types of lung cancer, and identify potential treatment targets, especially when standard biopsies are not feasible. Scientists have now made progress towards a liquid biopsy capable of distinguishing between multiple SCLC subtypes from blood samples.

New research at Fred Hutch Cancer Center (Seattle, WA, USA) has revealed that big-picture patterns of DNA packaging, gene activation, and mutations may provide the information required to develop a blood-based biopsy for SCLC patients. The team demonstrated that they could use cell-free tumor DNA from blood samples to differentiate between SCLC and non-small cell lung cancer (NSCLC), as well as among different subtypes of SCLC. They employed sophisticated computational techniques to analyze patterns in the activation status of hundreds to thousands of genes, revealing the gene activity and regulation within the tumors. Unlike most clinical circulating tumor DNA tests that focus on changes to DNA sequences, this new assay is designed to reveal gene activity and regulation status in tumors using a snippet of cell-free DNA.

SCLC typically responds well initially to chemotherapy, but recurrence is common. Recently, the integration of immune checkpoint inhibitors with standard treatments has improved survival rates, though these are not cures. The distinct gene expression patterns of SCLC and NSCLC can have significant implications for treatment effectiveness. For instance, certain SCLC subtypes show enhanced responsiveness to immunotherapy, which is not universally effective across all patients. Moreover, it is possible for tumors initially diagnosed as NSCLC to evolve into SCLC to evade treatment. This new assay could empower oncologists to customize SCLC treatments as more targeted therapeutic options become available, monitor for disease recurrence, and detect shifts from NSCLC to SCLC, thereby positively impacting both prognosis and treatment approaches.

“Our approach demonstrates that a full-featured circulating tumor DNA assay has the potential to classify clinical subtypes driven by transcriptional programs,” said Fred Hutch computational biologist Gavin Ha, PhD. “This assay expands the boundaries for potentially using circulating tumor DNA to improve treatment selection and cancer management.”

Related Links:
Fred Hutch Cancer Center

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
All-in-one Molecular Diagnosis System
Panall 8000

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.