Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Protein Droplets Stimulate Neurodegenerative Fibril Clumping

By LabMedica International staff writers
Posted on 03 May 2018
A team of neurodegenerative disease researchers has identified a molecular mechanism that prevents or reverses the formation of insoluble protein aggregates that characterize several brain disorders, including frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS).

Members of the class of RNA-binding proteins (RBPs) with prion-like domains (PrLDs) experience a phase transition to a functional liquid form. More...
In this form, RBPs can mature into abnormal hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Furthermore, several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mistakenly associate with cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibril formation and cause disease.

Investigators at the University of Pennsylvania (Philadelphia, USA) investigated the role of RBPs in the neurodegenerative disease process. They reported in the April 19, 2018, online edition of the journal Cell that nuclear-import receptors (NIRs) specifically chaperoned and potently disaggregated wild-type and disease-linked RBPs bearing a nuclear-localization sequence (NLS). A nuclear localization sequence is an amino acid signal that "tags" a protein for import into the cell nucleus by nuclear transport.

The investigators added NIRs to aggregates of TDP-43 and FUS proteins. They found that by increasing the concentration of NIRs in vitro, clumps of RBPs quickly dissolved. NIRs also dissolved cytoplasmic clumps in cells, and functional RBPs were returned to the nucleus. In addition, when the expression of NIRs was increased in fruit fly disease models, lifespan of the insects was extended and degeneration was reduced.

“Clumps that form from these disease proteins are composed of sticky fibrils that damage nerve cells,” said senior author Dr. James Shorter, associate professor of biochemistry and biophysics at the University of Pennsylvania. “We want to reverse the formation of these clumps and put the RNA-binding proteins back in their proper place, inside the nucleus.”

Related Links:
University of Pennsylvania


New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Laboratory Software
ArtelWare
New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.