We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Virtual Model Set to Boost Drug Development Efforts

By LabMedica International staff writers
Posted on 27 Mar 2018
A novel "physiome-on-a-chip" platform is expected to aid drug developers by combining several "organ-on-a-chip" nodes into an in vitro model of a functioning organism.

Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including three-dimensional matrices and microperfusion. More...
To adapt MPS technology for purposes of drug development, investigators at the Massachusetts Institute of Technology (Cambridge, USA) developed a method to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms. Each MPS platform represented a different organ and was compatible with the quantitative study of a range of compounds, including lipophilic drugs.

The investigators adapted the physiome-on-a-chip platform from technology they had previously developed and commercialized through the biotechnology company CN BioInnovations (Welwyn Garden City, United Kingdom), The system incorporated several on-board pumps to control the flow of fluids between the "organs," on different nodes replicating the circulation of blood, immune cells, and proteins through the human body.

The investigators reported in the March 14, 2018, online edition of the journal Scientific Reports that they had created several versions of the chip, linking up to 10 organ types: liver, lung, gut, endometrium, brain, heart, pancreas, kidney, skin, and skeletal muscle. Each "organ" consisted of clusters of one million to two million cells.

"Animals do not represent people in all the facets that you need to develop drugs and understand disease," said senior author Dr. Linda Griffith, professor of biological and mechanical engineering at the Massachusetts Institute of Technology. "That is becoming more and more apparent as we look across all kinds of drugs. A lot of the time you do not see problems with a drug, particularly something that might be widely prescribed, until it goes on the market. Some of these effects are really hard to predict from animal models because the situations that lead to them are idiosyncratic. With our chip, you can distribute a drug and then look for the effects on other tissues and measure the exposure and how it is metabolized."

"An advantage of our platform is that we can scale it up or down and accommodate a lot of different configurations," said Dr. Griffith. "I think the field is going to go through a transition where we start to get more information out of a three-organ or four-organ system, and it will start to become cost-competitive because the information you are getting is so much more valuable."

Related Links:
Massachusetts Institute of Technology
CN BioInnovations


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.