We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




RNA Library to Enhance CRISPR/Cas9 Gene Editing

By LabMedica International staff writers
Posted on 31 Jul 2017
A newly assembled library of RNA sequences was designed to maximize the usefulness of the CRISPR/Cas9 gene-editing tool.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. More...
CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at Cold Spring Harbor Laboratory (NY, USA) and the University of Cambridge (United Kingdom) described a new CRISPR resource in the July 20, 2017, issue of the journal Molecular Cell.

The investigators combined a machine-learning approach with other strategies to optimize knockout efficiency with the CRISPR/Cas9 system. In addition, they developed a multiplexed sgRNA expression strategy that promoted the functional deletion of single genes and allowed for combinatorial targeting. These strategies were combined to design and construct a genome-wide, sequence-verified, arrayed CRISPR library.

The newly assembled library of RNA sequences will be available to direct the CRISPR-Cas9 complex to cut DNA with precision here-to-fore unattainable. This increases the likelihood that a CRISPR "cut" (or series of related cuts) will have the intended functional impact.

"We have combined a machine learning approach with other strategies to optimize knock-out efficiency," said senior author Dr. Greg Hannon, professor of molecular cancer biology at the University of Cambridge. "The CRISPR library also facilitates multiplexing of experiments, as well as combinatorial targeting."

Related Links:
Cold Spring Harbor Laboratory
University of Cambridge

Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.