We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Cancer Researchers Identify Factors That Drive Melanoma Metastasis

By LabMedica International staff writers
Posted on 23 Feb 2017
Cancer researchers have traced a molecular pathway that cycles melanoma cells between modes that favor growth of the primary tumor (progression) and modes that favor invasion of other parts of the body (metastasis).

Cancer is characterized by uncontrolled growth of cells, but if uncontrolled growth was the only problem then cancer cells would be easily treated with surgery in most cases. More...
What makes cancer deadly is its tendency to invade tissue and migrate to other regions of the body. Metastatic melanoma is one of the most aggressive and difficult to treat of all cancer types.

Melanoma is a heterogeneous cancer, made up of many cellular populations that differ in their ability to induce tumor growth or invasion throughout the body. These populations have been found to switch back and forth to drive invasion and progression. This process appears to be controlled by opposing action of two genes, MITF (Microphthalmia-associated transcription factor) and BRN2 (POU class 3 homeobox 2).

Investigators at Queensland University of Technology reported in a paper published in the January 14, 2017, online edition of the journal EBiomedicine that the NFIB (nuclear factor I B) transcription factor was a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appeared to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2 (Enhancer of zeste homolog 2).

"BRN2 function reduces MITF expression to slow down proliferation and put the cells into invasive mode," said senior author Dr. Aaron Smith, lecturer in the school of biomedical science at Queensland University of Technology. "Our project has identified a pathway that allows BRN2 to do this, firstly by increasing the expression of another regulatory factor called NFIB that further controls an invasive program in these cells."

"An important target of NFIB is an enzyme called EZH2 which then produces global (wide ranging) changes to the cells activity. EZH2 favors the expression of invasive genes and also turns "off" MITF to prevent proliferation, further re-enforcing the invasive capability of the tumor cells", said Dr. Smith. "We have evidence the NFIB-EZH2 pathway may also underpin metastasis of other cancer types as well such as lung cancer. The good news is there are drugs to chemically inhibit EZH2 which are already in pre-clinical trials and which could be used to block the invasion."


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.