We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Carbon Monoxide-Releasing Compounds as Novel Antibacterial Drugs

By LabMedica International staff writers
Posted on 19 Jan 2017
A team of British molecular microbiologists has demonstrated the potential use of carbon monoxide (CO)-releasing compounds for treatment of gonorrhea.

Gonorrhea, which is caused by the bacterium Neisseria gonorrhoeae, has developed some highly drug-resistant strains, which has raised concern that the second most common sexually transmitted infection in England may become untreatable.

Investigators at the University of York have been examining the potential for carbon monoxide-releasing molecules (CO-RMs) as antimicrobial agents, which represents an exciting prospective in the fight against antibiotic resistance. More...
This field is especially attractive since Trypto-CORM, a tryptophan-containing manganese(I) carbonyl compound, was shown to be toxic against E. coli following photo-activation.

The investigators reported in the December 6, 2016, online edition of the journal MedChemComm that Trypto-CORM was toxic against Neisseria gonorrhoeae in the absence of photoactivation. Trypto-CORM toxicity could be reversed by the high CO affinity globin leg-hemoglobin (Leg-Hb), indicating that the toxicity was due to CO release.

Release of CO from Trypto-CORM in the dark was also detected with Leg-Hb (but not myoglobin) in vitro. Since N. gonorrhoeae is more sensitive to CO-based toxicity than other model bacterial pathogens, it may prove to be a viable candidate for antimicrobial therapy using CO-RMs.

Contributing author Dr. Ian Fairlamb, professor of chemistry at the University of York, said, "The carbon monoxide molecule targets the engine room, stopping the bacteria from respiring. Gonorrhea only has one enzyme that needs inhibiting and then it cannot respire oxygen and it dies. People will be well aware that CO is a toxic molecule but that is at high concentrations. Here we are using very low concentrations, which we know the bacteria are sensitive to. We are looking at a molecule that can be released in a safe and controlled way to where it is needed. We think our study is an important breakthrough. It is not the final drug yet but it is pretty close to it. People might perceive gonorrhea as a trivial bacterial infection, but the disease is becoming more dangerous and resistant to antibiotics."


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.