We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Two Classes of Fibroblasts Inhabit the Synovial Membrane in RA

By Gerald M. Slutzky, PhD
Posted on 07 Dec 2016
Rheumatoid arthritis researchers have identified two distinct classes of synovial fibroblasts (SFs) differentiated by expression of either PDPN (podoplanin) or CD248 (endosialin), which were located within different anatomical compartments of the inflamed synovial membrane.

Investigators at the University of Birmingham (United Kingdom) studied two distinct SF populations that were located preferentially in the lining or sub-lining layers of the synovial membrane, which were defined by their expression of either PDPN or CD248, and explored their ability to undergo self-assembly and transmigration in vivo.

For this study SFs were cultured in vitro, and phenotypic changes following stimulation with interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and transforming growth factor (TGF)-beta1 were evaluated. More...
To examine the phenotype of SF in vivo, a severe combined immunodeficiency (SCID) human-mouse model of cartilage destruction was utilized.

Results published in the November 18, 2016, online edition of the journal Arthritis Research and Therapy revealed that SFs in the lining layer in rheumatoid arthritis expressed high levels of PDPN compared to the normal synovium, whereas CD248 expression was restricted to sub-lining layer cells. TNF-alpha or IL1 stimulation in vitro resulted in an increased expression of PDPN. In contrast, stimulation with TGF-beta1 induced CD248 expression. The PDPN-expressing cells were associated with early fibroblast migration and cartilage erosion.

In the SCID human-mouse model, rheumatoid SF recapitulated the expression of PDPN and CD248. Thus, fibroblasts adjacent to cartilage expressed PDPN, and attached to, invaded, and degraded cartilage. Since PDPN-expressing cells were associated with early fibroblast migration and cartilage erosion in vivo, the investigators proposed that PDPN-expressing cells may be an attractive therapeutic target in rheumatoid arthritis.

First author Dr. Adam Croft, researcher in the rheumatology research group at the University of Birmingham, said, "This study not only shows the existence of distinct sub-sets of synovial fibroblasts, but also suggests that these cells are able to self-organize into lining and sub-lining layers in the presence of cartilage. Combined with the difference in migration rates between the two types of cell, these results are extremely promising in terms of finding new therapeutic targets for treatment of rheumatoid arthritis."

Related Links:
University of Birmingham


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Alcohol Testing Device
Dräger Alcotest 7000
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.