We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Lung and Tracheal Tissue Expected to Aid Respiratory Disease Research

By Gerald M. Slutzky, PhD
Posted on 25 Nov 2016
By modifying a technique for growing cultured intestinal tissue, researchers have developed a tissue-engineered model of the lung and trachea, which contains the diverse cell types present in the human respiratory tract.

Since the cellular and molecular mechanisms that underpin regeneration of the human lung are unknown, study of lung repair has been slowed by the necessity of using model systems that exclude key components.

Investigators at Children's Hospital Los Angeles (CA, USA) had previously developed tissue-engineered small intestine (TESI) and showed that this regenerated tissue was functional and contained all of the key components of the native tissue. More...
Based on this expertise, they hypothesized that multicellular epithelial and mesenchymal cell clusters or lung organoid units (LuOU) could be transplanted to recapitulate proximal and distal cellular structures of the native lung and airways.

The investigators described in the October 31, 2016, online edition of the journal Tissue Engineering Part C: Methods how they transplanted postnatal tissues from whole mouse and human lung, distal mouse lung, as well as mouse and human trachea onto biodegradable polymer scaffolds. The tissue obtained by using this strategy was termed tissue-engineered lung or TELu, and it contained the necessary cell types consistent with native adult lung tissue and demonstrated proliferative cells at two and four weeks. This technique recapitulated important elements of both mouse and human lungs featuring key components of both the proximal and distal lung regions.

"We think that understanding lung regeneration in this model will allow several steps forward," said senior author Dr. Tracy Grikscheit, associate professor of surgery at Children's Hospital Los Angeles. "For example, advanced stages of disease can be studied with TELu that would be impossible to fully understand in our patients. Likewise, we can more quickly apply many more therapies in this model in order to – hopefully – deliver future human therapies."

Related Links:
Children's Hospital Los Angeles



New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.