We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Success of Anti-Leukemia Compound Expected to Boost Drug Development Efforts

By LabMedica International staff writers
Posted on 18 Jul 2016
Cancer researchers have identified the active site of a protein required for growth and spread of the blood cancer acute myeloid leukemia (AML), and have designed a drug that blocks the site and suppresses the proliferation of mouse and human AML cell lines in vitro.

AML is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. More...
The symptoms of AML are caused by replacement of normal bone marrow with leukemic cells, which causes a drop in red blood cells, platelets, and normal white blood cells. Symptoms include fatigue, shortness of breath, easy bruising and bleeding, and increased risk of infection. AML progresses rapidly and is typically fatal within weeks or months if left untreated.

Investigators at Cold Spring Harbor Laboratory (NY, USA) and their colleagues at the biopharmaceutical company Boehringer Ingelheim (Ingelheim, Germany) reported in the July 4, 2016, online edition of the journal Nature Chemical Biology that AML cells required the BRD9 (Bromodomain-containing protein 9) subunit of the SWI−SNF chromatin-remodeling complex to sustain transcription of the MYC oncogene and the rapid cell proliferation that it caused.

The investigators derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppressed the proliferation of mouse and human AML cell lines. To establish these effects as on-target, they engineered a bromodomain-swap allele of BRD9 that retained functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells conferred resistance to the antiproliferative effects of the compound series, thus establishing BRD9 as the relevant cellular target.

"We were of course pleased with these results," said senior author Dr. Christopher Vakoc, an associate professor at Cold Spring Harbor Laboratory. "But we set an even higher bar. We wanted to be able to show, unambiguously, how the drug worked - we wanted to prove that its target in AML cells was the bromodomain of the BRD9 protein. As the age of precision medicine begins, this is an important issue, a matter of sink or swim for some candidate drugs. Here we have described a simple new approach that can unambiguously assign the therapeutic effect of a drug to a single binding site."

Related Links:
Cold Spring Harbor Laboratory
Boehringer Ingelheim

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.