We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Loss of Mitochondrial Fusion Enzyme Linked to Age-Related Loss of Muscle Mass

By LabMedica International staff writers
Posted on 06 Jul 2016
The enzyme mitofusin 2 (Mfn2) was shown to play a key role in the control of age-related muscle mitochondrial damage.

Mitochondrial dysfunction and the accumulation of damaged mitochondria are considered major contributors to the loss of muscle mass (sarcopenia) that comes with aging. More...
However, the molecular mechanisms responsible for these mitochondrial alterations have not been clarified.

When cells experience metabolic or environmental stresses, mitochondrial fusion and fission work to maintain functional mitochondria. An increase in fusion activity leads to mitochondrial elongation, whereas an increase in fission activity results in mitochondrial fragmentation. The components of this process can influence programmed cell death and lead to neurodegenerative disorders such as Parkinson's disease. The shapes of mitochondria are continually changing through the combination of fission, fusion, and motility. Specifically, fusion assists in modifying stress by integrating the contents of slightly damaged mitochondria as a form of complementation. By enabling genetic complementation, fusion of the mitochondria allows for two mitochondrial genomes with different defects within the same organelle to individually encode what the other lacks. In doing so, these mitochondrial genomes generate all of the necessary components for a functional mitochondrion.

Investigators at the Institute for Research in Biomedicine (Barcelona, Spain) reported in the June 22, 2016, online edition of The EMBO Journal that the enzyme mitofusin 2 (Mfn2) played a key role in the control of muscle mitochondrial damage. They demonstrated that aging was characterized by a progressive loss of Mfn2 activity in mouse skeletal muscle and that removal of Mfn2 from skeletal muscle generated a gene signature linked to aging.

Analysis of muscle from mice lacking Mfn2 revealed that aging-induced Mfn2 decrease contributed to age-related alterations in metabolic homeostasis and sarcopenia. Mfn2 deficiency reduced autophagy and impaired mitochondrial quality, which contributed to exacerbated age-related mitochondrial dysfunction.

On the other hand, aging-induced Mfn2 deficiency triggered a ROS (reactive oxygen species)-dependent adaptive signaling pathway that compensated somewhat for the loss of mitochondrial autophagy and minimized mitochondrial damage.

"Sarcopenia is not a minor issue because it impedes some elderly people from going about their everyday lives," said senior author Dr. Antonio Zorzano, head of the Complex Metabolic Diseases and Mitochondria Laboratory at the Institute for Research in Biomedicine. "If we want to boost the health of the elderly then this problem has to be addressed."

Related Links:
Institute for Research in Biomedicine



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
Gold Member
Collection and Transport System
PurSafe Plus®
New
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.