We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanobodies Facilitate Studies of Enzyme Substrate Interactions

By LabMedica International staff writers
Posted on 29 Jun 2016
The unusual crystal structure of a nanobody in complex with a serine protease enzyme was established by X-ray crystallography.

Serine proteases (or serine endopeptidases) are enzymes that cleave peptide bonds in proteins, in which serine serves as the nucleophilic amino acid at the (enzyme's) active site. More...
Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like. In humans, they are responsible for coordinating various physiological functions, including digestion, immune response, blood coagulation, and reproduction.

A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is little information on which factors determine which behavior a particular peptide segment will exhibit. To clarify this matter, investigators at Aarhus University (Denmark) determined the X-ray crystal structure of a nanobody in complex with a serine protease.

A nanobody (a single-domain antibody developed by the biotech firm Ablynx (Ghent, Belgium) is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind selectively to a specific antigen. With a molecular weight of only 12–15 kDa, single-domain antibodies are much smaller than common antibodies (150–160 kDa), which are composed of two heavy protein chains and two light chains, and even smaller than Fab fragments (approximately 50 kDa, one light chain and half a heavy chain) and single-chain variable fragments (approximately 25 kDa, two variable domains, one from a light and one from a heavy chain).

Single-domain antibodies from Camelids (camels, dromedaries, llamas, and their close relatives) have been shown to be just as specific as a regular antibody and in some cases they are more robust. They are easily isolated using the same phage panning procedure used for traditional antibodies, allowing them to cultured in vitro in large concentrations. The smaller size and single domain make these antibodies easier to manufacture in bulk in bacterial cells, making them ideal for research purposes.

The investigators reported in the May 23, 2016, online edition of the Journal of Biological Chemistry that the X-ray crystal structure of the nanobody-serine protease complex revealed that the nanobody displayed a new type of interaction, as it inserted its CDR-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism caused the nanobody to behave as a strong inhibitor as well as a poor substrate. The substrate behavior was incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the serine protease urokinase (uPA). Biochemical analysis revealed that an intra-loop interaction network within the CDR-H3 of the nanobody balanced its inhibitor versus substrate behavior.

Collectively, these results revealed molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors.

Related Links:
Aarhus University
Ablynx

Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Staining System
RAL DIFF-QUIK
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.