We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Stem Cell Therapy Shows Promise as Treatment for Pituitary Gland Failure

By LabMedica International staff writers
Posted on 28 Jun 2016
The potential use of diverse hormone-releasing pituitary cells derived from human pluripotent stem cells (hPSCs) to treat hypopituitarism was demonstrated in a rat model.

Previous studies have derived pituitary cell lines from mouse and human stem cells using three-dimensional organoid cultures that mimicked the complex events underlying pituitary gland development in vivo. More...
However, this inefficient and complicated approach relied on ill-defined cellular signals, lacked reproducibility, and was not scalable or suitable for clinical-grade cell manufacturing.

To correct these deficiencies, investigators at the Sloan Kettering Institute for Cancer Research (New York, NY, USA) developed a simple and efficient strategy to derive human pituitary lineages using monolayer culture conditions suitable for cell manufacturing.

The method, which was described in detail in the June 14, 2016, online edition of the journal Stem Cell Reports, was based on the precisely timed exposure of hPSCs to a few specific cellular signals that were known to play an important role during embryonic development. In particular, the relative composition of different hormonal cell types could be controlled by exposing hPSCs to different ratios of two proteins: FGF8 (fibroblast growth factor 8) and BMP2 (bone morphogenetic protein 2).

Pituitary cells derived from hPSCs showed basal and stimulus-induced hormone release in vitro and engraftment and hormone release in vivo after transplantation into a rat model of hypopituitarism. The grafted cells secreted adrenocorticotropic hormone, prolactin, and follicle-stimulating hormone, and they also triggered appropriate hormonal responses in the kidneys of the rats.

"The current treatment options for patients suffering from hypopituitarism, a dysfunction of the pituitary gland, are far from optimal," said first author Dr. Bastian Zimmer, a postdoctoral researcher at the Sloan Kettering Institute for Cancer Research. "Cell replacement could offer a more permanent therapeutic option with pluripotent stem cell-derived hormone-producing cells that functionally integrate and respond to positive and negative feedback from the body. Achieving such a long-term goal may lead to a potential cure, not only a treatment, for those patients. Our findings represent a first step in treating hypopituitarism, but that does not mean the disease will be cured permanently within the near future. However, our work illustrates the promise of human pluripotent stem cells as it presents a direct path toward realizing the promise of regenerative medicine for certain hormonal disorders."

Related Links:
Sloan Kettering Institute for Cancer Research


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.