We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Drug Resistance in Cancer Cells Linked to Changes in MicroRNA Expression

By LabMedica International staff writers
Posted on 09 Jun 2016
Cancer researchers have linked development of resistance to chemotherapy in pancreatic cancer cells to the downregulation of a specific microRNA (miRNA).

MicroRNAs are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. More...
With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

Investigators at the Georgia Institute of Technology (Atlanta, USA) adapted a line of pancreatic cancer cells (BxPC3) to increasing levels of the chemotherapy drug cisplatin. Following each cycle of exposure, surviving cells were cultured and then exposed to a higher level of the drug. After 20 treatment cycles, the resulting cell line had a resistance to cisplatin that was 15 times greater than that of the original cancer cells.

The investigators then compared levels of more than 2000 miRNAs in the cisplatin-resistant cell line (BxPC3-R) to those in the original cisplatin-sensitive parental (BxPC3) cell line.

They reported in the May 27, 2016, online edition of the journal Cancer Gene Therapy that the acquired drug resistance was accompanied by significant changes in the expression of 57 miRNAs, of which 23 were downregulated and 34 were upregulated. Employing a hidden Markov model (HMM) algorithm, they identified downregulation of miR-374b as likely being directly involved in acquisition of the drug-resistant phenotype.

This finding was confirmed by inducing overexpression of miR-374b in the resistant BxPC3-R cells, which restored cisplatin sensitivity to levels approaching those displayed by the BxPC3 parental cells.

"These cells have acquired resistance to the drug, and we have found a microRNA that seems to be playing a major role," said senior author Dr. John McDonald, professor of biology at the Georgia Institute of Technology. "We have shown that we can bring sensitivity to drugs back by restoring levels of miR374b, but there may be other miRNAs that will work equally as well. Just as there are multiple pathways to establish cancer and chemoresistance, there may be multiple pathways to restore chemosensitivity, as well."

"We were specifically interested in what role miRNAs might play in developing drug resistance in these cancer cells," said Dr. McDonald. "By increasing the levels of the miRNA governing the suite of genes we identified, we increased the cells' drug sensitivity back to what the baseline had been, essentially undoing the resistance. This would suggest that for patients developing chemotherapy resistance, we might one day be able to use miRNAs to restore the sensitivity of the cancer cells to the drugs."

Related Links:
Georgia Institute of Technology


New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
PSA Assay
CanAg PSA EIA
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.