We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Cells Loaded with Prodrug-Containing Microparticles Selectively Destroy Prostate Cancer Tumors

By LabMedica International staff writers
Posted on 02 May 2016
A novel approach to treating metastatic prostate cancer with minimal adverse side effects is based on cellular transport of a harmless prodrug that is activated and becomes toxic only in the vicinity of the tumor microenvironment. More...


Investigators at Brigham and Women's Hospital (Boston, MA, USA) and colleagues at Johns Hopkins University (Baltimore, MD, USA) loaded human mesenchymal stem cells (MSCs) with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulated the macromolecule G114, a thapsigargin-based prodrug that was specifically activated by prostate specific antigen (PSA).

Thapsigargin, a sesquiterpene lactone extracted from a plant, Thapsia garganica is a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase. The drug raises cytosolic (intracellular) calcium concentration by blocking the ability of the cell to pump calcium into the sarcoplasmic and endoplasmic reticula. Thapsigargin specifically inhibits the fusion of autophagosomes with lysosomes; the last step in the autophagic process. The inhibition of the autophagic process in turn induces stress on the endoplasmic reticulum, which ultimately leads to cellular death.

The investigators reported in the March 17, 2016, online edition of the journal Biomaterials that G114-particles (approximately 950 nanometers in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from the loaded cells. G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting prostate cancer cell line, LNCaP.

G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 prostate cancer xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in vitro or in vivo.

"The prodrug only becomes toxic in the presence of the tumor microenvironment, which adds another layer of specificity to this targeted delivery system," said contributing author Dr. John Isaacs, professor of urology and oncology at Johns Hopkins University.

"In cancer therapeutics, one of the great challenges is finding how to specifically deliver high doses of chemotherapeutics to a tumor, but minimize the systemic toxicity," said senior author Dr. Jeffrey Karp, associate professor of medicine at Brigham and Women's Hospital.

Related Links:
Brigham and Women's Hospital
Johns Hopkins University

New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.