Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Cells Loaded with Prodrug-Containing Microparticles Selectively Destroy Prostate Cancer Tumors

By LabMedica International staff writers
Posted on 02 May 2016
A novel approach to treating metastatic prostate cancer with minimal adverse side effects is based on cellular transport of a harmless prodrug that is activated and becomes toxic only in the vicinity of the tumor microenvironment. More...


Investigators at Brigham and Women's Hospital (Boston, MA, USA) and colleagues at Johns Hopkins University (Baltimore, MD, USA) loaded human mesenchymal stem cells (MSCs) with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulated the macromolecule G114, a thapsigargin-based prodrug that was specifically activated by prostate specific antigen (PSA).

Thapsigargin, a sesquiterpene lactone extracted from a plant, Thapsia garganica is a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase. The drug raises cytosolic (intracellular) calcium concentration by blocking the ability of the cell to pump calcium into the sarcoplasmic and endoplasmic reticula. Thapsigargin specifically inhibits the fusion of autophagosomes with lysosomes; the last step in the autophagic process. The inhibition of the autophagic process in turn induces stress on the endoplasmic reticulum, which ultimately leads to cellular death.

The investigators reported in the March 17, 2016, online edition of the journal Biomaterials that G114-particles (approximately 950 nanometers in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from the loaded cells. G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting prostate cancer cell line, LNCaP.

G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 prostate cancer xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in vitro or in vivo.

"The prodrug only becomes toxic in the presence of the tumor microenvironment, which adds another layer of specificity to this targeted delivery system," said contributing author Dr. John Isaacs, professor of urology and oncology at Johns Hopkins University.

"In cancer therapeutics, one of the great challenges is finding how to specifically deliver high doses of chemotherapeutics to a tumor, but minimize the systemic toxicity," said senior author Dr. Jeffrey Karp, associate professor of medicine at Brigham and Women's Hospital.

Related Links:
Brigham and Women's Hospital
Johns Hopkins University

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.