We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Biomaterial Scaffolds Boost Interleukin Production to Promote Wound Healing

By LabMedica International staff writers
Posted on 29 Apr 2016
Print article
Image: A cross-section of injured mouse muscle tissue, with healthy tissue in pink and scar tissue shown in purple. Both mice genetically lack T-cells; the mouse on the left was injected with T-cells that became type II helper T-cells and aided healing (Photo courtesy of Dr. Kenneth Estrellas, Johns Hopkins University).
Image: A cross-section of injured mouse muscle tissue, with healthy tissue in pink and scar tissue shown in purple. Both mice genetically lack T-cells; the mouse on the left was injected with T-cells that became type II helper T-cells and aided healing (Photo courtesy of Dr. Kenneth Estrellas, Johns Hopkins University).
The improved wound healing promoted by use of "biomaterial" scaffolds was shown to be due to activation of the immune system's T helper II pathway with a subsequent increase in production of interleukins.

Biomaterial scaffolds derived from cardiac muscle and bone extracellular matrix components help to guide regenerating tissue. Investigators at Johns Hopkins University (Baltimore, MD, USA) tested how such biomaterial scaffolds interact with the immune system in damaged tissue to promote repair.

They reported in the April 15, 2016, issue of the journal Science that scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper II pathway that guided interleukin-4 (IL4) – dependent macrophage polarization, which was critical for functional muscle recovery. Mice that had been genetically engineered to lack T-cells did not activate interleukin production or heal as well as normal mice.

"In previous research, we have seen different immune system responses to the same biomaterial implanted in different tissues or environments, and that got us interested in how biomaterials might stimulate the immune system to promote regeneration," said senior author Dr. Jennifer Elisseeff, professor of ophthalmology and biomedical engineering at Johns Hopkins University. "We still have a lot to learn, but this study is a step toward designing materials to elicit a beneficial immune response."

Related Links:
Johns Hopkins University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The utilization of liquid biopsies in cancer research is a rapidly developing field (Photo courtesy of Lightspring/Shutterstock)

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

B-cell lymphoma is the predominant form of cancer affecting the lymphatic system, with about 30% of patients with aggressive forms of this disease experiencing relapse. Currently, the disease’s risk assessment... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.