Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Ganglioside Probes Enable Tracking of Membrane Lipid Rafts in Living Cells

By LabMedica International staff writers
Posted on 26 Apr 2016
A team of Japanese cell biologists developed a series of fluorescently labeled gangliosides that enabled them to visualize cell membrane lipid raft domains in living cells.

Combinations of glycosphingolipids and protein receptors are organized in glycolipoprotein microdomains known as lipid rafts within the cellular plasma membrane. More...
These specialized membrane microdomains compartmentalize cellular processes by serving as organizing centers for the assembly of signaling molecules, influencing membrane fluidity and membrane protein trafficking, and regulating neurotransmission and receptor trafficking. Lipid rafts are more highly ordered and tightly packed than the surrounding bilayer, but float freely in the membrane bilayer. Although more common in the plasma membrane, lipid rafts have also been reported in other parts of the cell, such as the Golgi apparatus and lysosomes.

The exact functions of lipid rafts are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs to serve as tracer molecules. To correct this deficit, investigators at Kyoto University (Japan) synthesized four complete ganglioside molecules with fluorescent markers attached at specific locations. They used these tracers in a single-fluorescent-molecule living-cell imaging system.

Results published in the April 4, 2016, online edition of the journal Nature Chemical Biology revealed that in the live-cell plasma membrane there could be seen clear but transient co-localization and co-diffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59. The ganglioside molecules were always mobile in quiescent cells with extremely short interactions taking place that last for about 12 milliseconds for CD59 monomers, 40 milliseconds for CD59's transient homodimer rafts, and 48 milliseconds for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners.

"Such dynamic behaviors were difficult to find using normal techniques, and our findings were made possible by single-molecule tracking of new fluorescent ganglioside probes," said contributing author Dr. Kenichi Suzuki, professor of membrane biology at Kyoto University. "Our findings established the concept of dynamic raft domains: their constituent molecules assemble to form raft domains, do their jobs within several tens of milliseconds, and then move away for the next assembly to perform the next task."

Related Links:
Kyoto University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
New
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.