We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Enzyme-Loaded Magnetic Nanoparticles Suitable for Therapeutic and Industrial Applications

By LabMedica International staff writers
Posted on 25 Apr 2016
Members of a novel class of nano-sized transport vessels are composed of only two biocompatible components: an enzyme and magnetite nanoparticles.

Magnetically controlled enzymatic nanoparticles have received much attention for both therapeutic and industrial applications. More...
Such materials usually comprise at least four components: the enzyme, magnetic nanoparticles, stabilizing components, and an organic or inorganic (or hybrid) matrix as a carrier. However, such combinations can affect the magnetic response and/or the enzymatic activity, and also face regulatory restrictions that prevent them from being used for intravenous administration.

To overcome these difficulties, investigators at ITMO University (St. Petersburg, Russia) and their colleagues at the Hebrew University of Jerusalem (Israel), and Cyril and Methodius University (Skopje, Macedonia) developed a new class of magnetically controlled nanoparticles made from enzymes that have been entrapped directly within magnetite particles.

These particles were made by adding enzymes directly to a magnetite hydrosol mixture. Magnetite particles surrounded the enzymes, and after drying, formed a firm porous structure from which the enzyme could not escape.

The investigators reported in the March 16, 2016, online edition of the journal Chemistry of Materials that they had used the direct entrapment approach to create a series of magnetic biocomposites with enzymes of therapeutic and industrial interest including carbonic anhydrase, ovalbumin, horseradish peroxidase, acid phosphatase, proteinase, and xylanase.

The activity of the entrapped enzymes was studied at different temperatures and concentrations, and it was found that they showed remarkable thermal stabilization induced by the magnetite matrix. For example, entrapped carbonic anhydrase catalyzed the decomposition of p-nitrophenylacetate at a temperature of 90 degrees Celsius, while the free enzyme completely lost activity and denaturized at 70 degrees Celsius.

"The nanocomposite is absolutely biocompatible and harmless for injection into the human body," said Dr. Andrey Drozdov, a research associate in the international laboratory of solution chemistry of advanced materials and technologies at ITMO University. "Separately, both magnetite and therapeutic enzymes have medical approval for intravenous injection. Therefore, to approve their joint use should not be difficult. The body already knows what to do with these substances and how to incorporate them into the process of metabolism. Using a magnetic field, the particles can be condensed on blood clots; moreover, such systems will work for quite a long time until the enzyme is completely oxidized."

Related Links:
ITMO University
Hebrew University of Jerusalem
Cyril and Methodius University

Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Automated Biochemical Analyzer
iBC 900
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.