We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cholesterol Analogs Block Growth of Tuberculosis Bacteria

By LabMedica International staff writers
Posted on 21 Apr 2016
Print article
Image: A high magnification (15,549x) scanning electron micrograph (SEM) showing a number of Gram-positive Mycobacterium tuberculosis bacteria (Photo courtesy of the CDC).
Image: A high magnification (15,549x) scanning electron micrograph (SEM) showing a number of Gram-positive Mycobacterium tuberculosis bacteria (Photo courtesy of the CDC).
Analogs of cholesterol that have been modified by the addition of non- degradable side chains have been shown to inhibit the growth of Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB).

Investigators at the University of Queensland (Brisbane, Australia) and the University of California, San Francisco (USA) had previously found that the cholesterol derivative cholest-4-en-3-one, whether added or generated intracellularly from cholesterol, inhibited the growth of M. tuberculosis when the cytochrome P450 enzymes (CYP125A1 and CYP142A1) that initiate degradation of the sterol side chain were disabled.

Continuing this line of research, they reported in the April 1, 2016, issue of the Journal of Biological Chemistry that a 16-hydroxy derivative of cholesterol, which was previously shown to inhibit growth of M. tuberculosis, acted by preventing the oxidation of the sterol side chain even in the presence of the relevant cytochrome P450 enzymes. The finding that (25R)-cholest-5-en-3beta,16beta,26-triol (1) (and its 3-keto metabolite) inhibited growth suggested that cholesterol analogs with non-degradable side chains represented a novel class of anti- mycobacterial agents.

To confirm this speculation, the investigators synthesized two cholesterol analogs with truncated, fluorinated side chains and demonstrated that these compounds could block the growth of M. tuberculosis in culture.

Contributing author Dr. James De Voss, professor of chemistry and molecular biosciences at the University of Queensland said, "If you give this bacterium modified cholesterol instead, then it cannot use it as its energy source and so it stops growing. Interestingly, we do not quite understand why this happens. Our discovery suggests a new way in which we can robustly inhibit growth of the TB bacterium."

Related Links:
University of Queensland
University of California, San Francisco

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.