We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Bifunctional Gold Nanoparticles Destroy Bacterial Pathogens with Antibiotic and Thermal Killing

By LabMedica International staff writers
Posted on 12 Apr 2016
A team of bioengineers has designed a novel class of targeted bifunctional nanoparticles that attacks pathogenic bacteria with both antibiotic and photo-activated thermal killing strokes.

Investigators at the University of Arkansas (Fayetteville, USA) were searching for alternative methods to treat infections caused by the "ESKAPE" group of pathogens (Enterococcus faecium, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), which have developed antibiotic resistance and cause the majority of nosocomial infections.

Towards this end they developed a nanoparticle drug delivery system based on polydopamine-coated gold nanocages. More...
These nanoparticles could be coated with an antibiotic and labeled with antibodies to guide them to specific bacterial targets. The gold particles could be induced to release the antibiotic while warming to a lethal temperature upon exposure to low levels of laser light.

The investigators used Staphylococcus aureus as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) could be incorporated into polydopamine-coated gold nanocages and that daptomycin-loaded gold nanocages could be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoparticles directly to the bacterial cell surface.

They reported in the February 16, 2016, online edition of the journal ACS Infectious Diseases that targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis, and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. In addition, they demonstrated that laser irradiation at levels within the current safety standard for use in humans could be used to achieve both a lethal photothermal effect and controlled release of the antibiotic. The combination of antibiotic action and lethal heat eradicated all detectable S. aureus cells.

While the system was validated using free-floating bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains, it was subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.

“We believe that this approach could facilitate the effective treatment of infections caused by antibiotic-resistant bacteria, including those associated with bacterial biofilms, which are involved in a wide variety of bacterial infections,” said senior author Dr. Jingyi Chen, assistant professor of chemistry and biochemistry at the University of Arkansas.

Related Links:

University of Arkansas



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Pipette Management Software
VIALINK
New
Staining System
RAL DIFF-QUIK
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.