We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mitochondrial Genomes Reconstructed from Teeth of Prehistoric Native Americans

By LabMedica International staff writers
Posted on 04 Apr 2016
Using advanced technologies, physicial anthropologists succeeded to enrich human mitochondrial DNA (mtDNA) from dental calculus (calcified plaque on teeth) in amounts that enabled reconstruction of whole mitogenomes for maternal lineage ancestry analysis, providing an alternative to skeletal remains in ancient DNA investigations of prehistoric human ancestry and health.

Christina Warinner and Cecil M. More...
Lewis, Jr., professors at University of Oklahoma (Norman, OK, USA), collaborated with researchers from Arizona State University (USA) and Pennsylvania State University (USA) on the capture, enrichment, and high-throughput sequencing of DNA extracted from 6 individuals at 700-year-old Oneota cemetery (Norris Farms #36), including 3 who had previously tested negative for DNA preservation in bone using conventional PCR.

The results provided high-resolution, whole mitochondrial genome information for the Oneota, a Native American archaeological culture that rose to prominence ca. AD 1000–1650, but declined sharply following European contact.

“We can now obtain meaningful human, pathogen, and dietary DNA from a single sample, which minimizes the amount of ancient material required for analysis,” said Prof. Warinner. In recent years, dental calculus has emerged as an unexpected valuable reservoir of ancient DNA from dietary and microbial sources. This study demonstrates that it is also an important source of human DNA. Very little dental calculus was required for analysis—fewer than 25 milligrams per individual.

Although dental calculus preserves alongside skeletal remains, it is not tooth tissue. Dental calculus, also known as tartar, is a calcified form of dental plaque that acquires human DNA and proteins passively, primarily through the saliva and other host secretions. Once mineralized within dental calculus, human DNA and proteins can preserve for thousands of years.

Conventional techniques for recovering ancient human DNA typically require the destruction of bone or tooth tissue during analysis, and this has been a cause of concern for many Native and indigenous communities. Obtaining DNA from dental calculus does not damage or disturb the integrity of skeletal remains. In addition, because dental calculus is the richest known source of DNA in the archaeological record, it presents unique opportunities for investigating archaeological sites with preservation challenges.

“Dental calculus may enable researchers to retrieve ancient DNA from samples where bone or other biological tissues are too degraded for analysis. This is particularly exciting to those of us who work in tropical or extremely old contexts, where traditional sources of DNA may be poorly preserved or even non-existent,” said Maria Nieves Colón, PhD candidate, ASU.

The study represents an important technological advancement for paleogenomic investigations in prehistoric regions where destructive analysis of skeletal remains is difficult or controversial. “We hope that this research on dental calculus from the Norris Farms site acts as the first step toward future paleogenomic investigations of prehistoric North American remains in a respectful and non-destructive way that interests and benefits both descendent communities and anthropologists,” said Andrew Ozga, OU doctoral graduate, and currently postdoctoral candidate at ASU.

The study, by Ozga AT et al., was published March 16, 2016, in the journal American Journal of Physical Anthropology.

Related Links:

University of Oklahoma



New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
Laboratory Software
ArtelWare
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.