We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Structural Studies Reveal Molecular Basis for Bacterial Motility in the Urinary Tract

By LabMedica International staff writers
Posted on 23 Mar 2016
A team of molecular microbiologists has unraveled the mechanism used by Escherichia coli bacteria to bind to cells lining the urinary tract and explained how the pathogen migrates to the bladder despite the strong force of urine flowing in the other direction. More...


E. coli attaches to host epithelia via the fimbrial adhesion FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins.

Investigators at the University of Basel (Switzerland) and ETH Zurich (Switzerland) established a model system for fimbrial FimH function. A fimbril is a proteinaceous appendage in many gram-negative bacteria that is thinner and shorter than a flagellum.

The investigators revealed, in a paper published in the March 7, 2016, online edition of the journal Nature Communications, a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction, and molecular dynamics simulations. They found that FimH bound to sugar structures on the cell surface increasingly tightly the more it was pulled. As strong tensile forces developed during urination, FimH protected the bacteria from being flushed out. In the absence of tensile force, the FimH pilin domain allosterically accelerated spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity and allowing the bacteria to release from the cell surface and migrate in the direction of the bladder.

“Through the combination of several biophysical and biochemical methods, we have been able to elucidate the binding behavior of FimH in more detail than ever before”, said senior author Dr. Rudolf Glockshuber, professor of molecular biology and biophysics at ETH Zurich. “The protein FimH is composed of two parts, of which the second non-sugar binding part regulates how tightly the first part binds to the sugar molecule. When the force of the urine stream pulls apart the two protein domains, the sugar binding site snaps shut. However, when the tensile force subsides, the binding pocket reopens. Now the bacteria can detach and swim upstream the urethra.”

Related Links:
University of Basel
ETH Zurich



Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.