We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Experimental Drug Blocks Leukemia Growth in Mouse Model System

By LabMedica International staff writers
Posted on 14 Mar 2016
An experimental drug that blocks the activity of a specific histone demethylase enzyme was found to cure the TAL-1 form of acute T-cell lymphoblastic leukemia (T-ALL) in a mouse model system.

T-ALL afflicts mostly children, with more than 500 new pediatric diagnoses in the United States annually. More...
The leukemia, which occurs in a child's developing T-cells, is fatal in about 1 in 4 cases. In the remaining patients with the disease, T-ALL requires intense levels of chemotherapy or radiation.

Investigators at the Ottawa Hospital Research Institute (Canada; www.ohri.ca) concentrated their efforts on a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL-1.

They reported in the March 1, 2016, issue of the journal Genes & Development that this subtype of T-ALL was uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase enzyme UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome).

The investigators used a model system in which human T-ALL cells were transplanted into mice. Some of the animals were treated with the experimental drug GSK-J4, which is a potent cell-permeable inhibitor of the histone H3 lysine 27 (H3K27) demethylase JMJD3, an essential component of regulatory transcriptional chromatin complexes. They found that this drug blocked UTX activity and stopped the growth of TAL-1 type cancer cells. After three weeks of treatment the number of cancer cells in the bone marrow decreased by 80%, and the drug did not seem to harm normal cells or have any short-term effects on other organs of the body. The treatment was specific for the TAL-1 subtype, and did not prevent growth of any other types of T-ALL.

"It is very exciting because this is the first time anyone has found a potential personalized treatment for this aggressive disease," said senior author Dr. Marjorie Brand, a senior scientist at the Ottawa Hospital Research Institute. "Unlike current therapies, ours targets the offending gene without harming the rest of the body. Learning how a disease works at a molecular level needs to happen before any kind of successful drug can be developed. You need to do laboratory studies to find the right treatment and prove it works."

Related Links:

Ottawa Hospital Research Institute



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.