We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Search for Drugs to Treat Spinal Muscular Atrophy Pinpoints Likely Target Enzyme

By LabMedica International staff writers
Posted on 02 Mar 2016
Print article
Image: From left to right: Microscopic images comparing the hind leg muscles of normal mice, mice with spinal muscular atrophy, and mice with spinal muscular atrophy that have had the enzyme Jnk3 inhibited. Jnk3 deficiency appears to reduce muscle degeneration (muscle-wasting) and increase muscle growth in mice with the disease (Photo courtesy of the journal Human Molecular Genetics).
Image: From left to right: Microscopic images comparing the hind leg muscles of normal mice, mice with spinal muscular atrophy, and mice with spinal muscular atrophy that have had the enzyme Jnk3 inhibited. Jnk3 deficiency appears to reduce muscle degeneration (muscle-wasting) and increase muscle growth in mice with the disease (Photo courtesy of the journal Human Molecular Genetics).
Neurological disease researchers have identified a target for drugs to treat the hereditary childhood neurodegenerative disorder spinal muscular atrophy (SMA).

SMA is caused by a mutation in the SMN1 (survival motor neuron 1) gene. SMN1 deficiency causes spinal motor neuron degeneration, which results in progressive muscle atrophy and death. The molecular mechanism underlying neurodegeneration in SMA is unknown, and no treatment is currently available to prevent neurodegeneration and reduce the burden of illness.

Investigators at the Texas Tech University Health Sciences Center (El Paso, USA) worked with neuron cultures and mouse models of SMA while searching for possible drug targets that would correct the neurological damage caused by the disorder.

They reported in the December 15, 2015, issue of the journal Human Molecular Genetics that they had identified the c-Jun NH2-terminal kinase (JNK) signaling pathway as being responsible for neurodegeneration in SMA. The neuron-specific protein isoform Jnk3 was required for the neuron degeneration caused by SMN1 deficiency, while lack of Jnk3 reduced degeneration of cultured neurons caused by low levels of SMN1. Genetic inhibition of the JNK pathway in JNK3 knockout mice resulted in relief of SMA symptoms. Jnk3 deficiency prevented the loss of spinal cord motor neurons, reduced muscle degeneration, improved muscle fiber thickness and muscle growth, improved motor function and overall growth and increased lifespan of mice with SMA.

"So far, spinal muscular atrophy research has focused on targeting the genetic mutation to prevent degeneration of spinal motor neurons, but it has not been successful because of challenges associated with gene therapy," said senior author Dr. Laxman Gangwani, associate professor of neurosciences at Texas Tech University Health Sciences Center. "This is the first study done that identifies a target, Jnk3, that is independent of the genetic mutation of spinal muscular atrophy for novel therapeutic development.

"Jnk3 represents a promising new avenue of research for clinical advances in developing a treatment," said Dr. Gangwani. "We saw less muscle degeneration, more muscle growth and better muscle strength, and improvement in overall movement. What were more striking were a four-fold reduction in initial mortality period and a two-fold increase in total lifespan."

Related Links:

Texas Tech University Health Sciences Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.