We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




LDL-DHA Nanoparticles Selectively Eradicate Liver Tumors in Rat Model System

By LabMedica International staff writers
Posted on 22 Feb 2016
Uptake of low-density lipoprotein (LDL) particles loaded with the omega-3 fatty acid docosahexaenoic acid (DHA) by liver cancer cells resulted in destruction of established tumors in a rat liver cancer model.

While dietary intake of DHA has been implicated in protecting patients with viral hepatitis B or C from developing liver cancer, little is known about the effects of DHA on established solid tumors.

In order to deliver a higher concentration of DHA to liver cancer cells than could be achieved through the diet, investigators at the University of Texas Southwestern Medical Center (Dallas, USA) used modified LDL particles as a targeted delivery system. More...


The investigators administered normal LDL or LDL particles in which the cholesterol had been replaced by DHA to rats with established liver tumors. They found that control rats had large, highly vascularized tumors that contained proliferating cells. However, rats given LDL−DHA had smaller, pale tumors that were devoid of vascular supply and more than 80% of the tumor tissue was necrotic. Four to six days after injection of LDL−DHA, the tumors were three-fold smaller than those of control rats. The liver tissue that surrounded the tumors showed no histologic or biochemical evidence of injury.

Injection of LDL−DHA into the hepatic artery of rats selectively deregulated redox reactions in tumor tissues by increasing levels of reactive oxygen species and lipid peroxidation, depleting and oxidizing glutathione and nicotinamide adenine dinucleotide phosphate, and significantly down-regulating the antioxidant enzyme glutathione peroxidase-4. Remarkably, the redox balance in surrounding normal liver tissues was not disrupted.

“This approach offers a potentially new and safe way of treating liver cancer, and possibly other cancers,” said senior author Dr. Ian Corbin, assistant professor of medicine at the University of Texas Southwestern Medical Center. “The method utilizes the cholesterol carrier LDL, combined with fish oil to produce a unique nanoparticle that is selectively toxic to cancer cells.”

“This research study clearly demonstrates the anticancer potential of omega-3 fatty acids,” said Dr. Corbin. “We knew that cancer cells like to take up LDL in order to acquire cholesterol and other lipids to help build their cell membranes as they proliferate. So what we have here is a classic example of a Trojan horse. The cancer cell thinks it is getting cholesterol to provide the nutritional building blocks needed to grow and proliferate. Instead, it gets a payload of fish oil in the form of LDL-DHA nanoparticles that are selectively toxic to cancer cells without harming normal liver cells.”

The study was published in the February 2016 issue of the journal Gastroenterology.

Related Links:

University of Texas Southwestern Medical Center



Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Staining Management Software
DakoLink
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.