Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microtubule Network Created by Three-dimensional Printing Transports Blood in an Animal Model

By LabMedica International staff writers
Posted on 18 Nov 2015
A novel three-dimensional printing technique was used to create networks of microtubules that could be surgically attached to supply oxygen and nutrients to replacement tissues and organs growing in vitro and to transplanted organs growing in vivo. More...


A major problem hindering the engineering of large artificial tissues, such as livers or kidneys, is providing internal cells with nutrients. Implanting engineered tissue scaffolds inside the body to encourage blood vessels from nearby tissues to spread to the implanted tissue usually takes too long, and cells deep inside the new organ often starve or die from lack of oxygen before they can be reached by the slow-growing blood vessels.

To avoid this problem, investigators at Rice University (Houston, TX, USA) and surgeons at the University of Pennsylvania (Philadelphia, USA) teamed up do develop a new way to channel nutrients to growing masses of tissue. They created artificial blood vessels by using an open-source three-dimensional printer that deposited individual filaments of sugar glass one layer at a time to print a lattice of microtubules. Once the sugar hardened, it was placed in a mold that was filled with silicone gel. After the gel cured, the sugar was dissolved leaving behind a network of small channels in the silicone.

In a proof-of-principle experiment that was described in the September 28, 2015, online edition of the journal Tissue Engineering Part C: Methods, surgeons connected the inlet and outlet of the engineered microtubule network to a major artery in a small animal model. Using Doppler imaging technology, they observed and measured blood flow through the construct and found that it withstood physiologic pressures and remained open and unobstructed for up to three hours.

"They do not yet look like the blood vessels found in organs, but they have some of the key features relevant for a transplant surgeon," said contributing author Dr. Jordan Miller, assistant professor of bioengineering at Rice University. "We created a construct that has one inlet and one outlet, which are about one millimeter in diameter, and these main vessels branch into multiple smaller vessels, which are about 600 to 800 microns."

"This study provides a first step toward developing a transplant model for tissue engineering where the surgeon can directly connect arteries to an engineered tissue," said Dr. Miller. "In the future we aim to utilize a biodegradable material that also contains live cells next to these perfusable vessels for direct transplantation and monitoring long term."

Related Links:

Rice University
University of Pennsylvania



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.