We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Spherical Cell Cultures May Revolutionize the Study of Living Brain Tissues

By LabMedica International staff writers
Posted on 09 Jun 2015
Spherical cultures of neural-type cells generated from human induced pluripotent stem cells (iPS cells) may represent a major breakthrough in the pursuit of a model system for studying living, organized human brain tissue.

Techniques that allow reprogramming of somatic cells into pluripotent cells that can be differentiated in vitro provide a unique opportunity to study normal and abnormal corticogenesis (development of the brain's cerebral cortex). More...


In a paper published in the May 25, 2015, online edition of the journal Nature Methods, investigators at Stanford University (Palo Alto, CA) described a simple and reproducible three-dimensional culture approach for generating a laminated cerebral cortex–like structure from pluripotent stem cells that they called human cortical spheroids (hCSs).

To produce hCSs, the investigators created seven batches of iPS cells, from patches of skin obtained from five people. They grew the iPS cells into flat, multicellular colonies on the surface of laboratory dishes. Intact colonies were detached and transferred into special laboratory dishes treated to prevent the cells from adhering to the plastic. Within a few hours, the colonies began to fold upon themselves to create spheres. The young spherical colonies were treated with a combination of growth factors and small molecules to promote their development into neural progenitor cells. After about seven weeks, nearly 80% of the cells in the spheres expressed a protein made by neural tissue, and a further 7% of the cells expressed another protein specifically made by astrocytes. The spheroids grew to be as large as five millimeters in diameter and could be maintained in the laboratory for nine months or more.

Analysis revealed that the spheroids contained neurons from both deep and superficial cortical layers and mimicked in vivo fetal brain development. The neurons were electro-physiologically mature, displayed spontaneous activity, were surrounded by inert astrocytes, and formed functional synapses. Experiments on hCS slices demonstrated that cortical neurons participated in network activity and produced complex synaptic events.

“I am a neurobiologist,” said senior author Dr. Sergiu Pasca, assistant professor of psychiatry and behavioral sciences at Stanford University. “I need to study neurons that are firing. One of the major problems in understanding mental disorders is that we cannot directly access the human brain. These spheroids closely resemble the three-dimensional architecture of the cortex and have gene-expression patterns that mimic those in a developing fetal brain.”

“In contrast to monolayer cultures, we observed an orderly, three-dimensional arrangement of specific types of neuronal cells in the hCSs,” said Dr. Pasca. “Astrocytes are really essential to neuronal signaling, but it has been challenging to efficiently make both neurons and astrocytes at the same time. Until now, researchers have been relying on astrocytes from rodents or human fetal tissue, and trying to grow neurons on top of them. Our system generates astrocytes that develop in concert with and are genetically identical to the surrounding neurons.”

Related Links:

Stanford University



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Modular Hemostasis Automation Solution
CN Track
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.