Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Study Details the Block by Block Assembly of DNA Nanotubes

By LabMedica International staff writers
Posted on 10 Mar 2015
A team of biomolecular engineers has developed a method for the block by block assembly of DNA nanotubes that controls the positioning of rungs along the backbone of the nanotubes, minimizes the polydispersity in their manufacture, and reduces the building costs.

Previously, researchers had prepared nanotubes using a method that relied on spontaneous assembly of DNA in solution. More...
This method frequently introduced structural flaws and did not allow fine control of tube size.

Utilizing advances in single-molecule fluorescence microscopy, investigators at McGill University (Montreal, Canada) developed a new, low-cost method to build DNA nanotubes block by block. Nanotubes prepared in this fashion could be custom designed to a specific length and nucleotide sequence and were better suited for use in applications such as optical and electronic devices or smart drug-delivery systems.

The investigators reported in the February 23, 2015, online edition of the journal Nature Chemistry that they had constructed prototype structures of about 450 nm in contour length consisting of up to 20 repeat units. These were built using a cyclic scheme starting from a "foundation rung" specifically bound to a surface. Distinct rungs were then incorporated in a predetermined manner. Using fluorescently tagged rungs, single-molecule fluorescence studies demonstrated the robustness and structural fidelity of the constructs and confirmed the incorporation of the rungs in quantitative yield (greater than 95%) at each step of the cycle.

“Just like a Tetris game, where we manipulate the game pieces with the aim of creating a horizontal line of several blocks, we can now build long nanotubes block by block,” said first author Amani Hariri, a doctoral student in chemistry at McGill University. “By using a fluorescence microscope we can further visualize the formation of the tubes at each stage of assembly, as each block is tagged with a fluorescent compound that serves as a beacon. We can then count the number of blocks incorporated in each tube as it is constructed.”

Related Links:

McGill University



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.