Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Turning Stem Cells from Fat into Blood Vessels

By LabMedica International staff writers
Posted on 13 Aug 2012
Autologous adult stem cells extracted via liposuction from fat tissue can provide the raw materials for growing tissue-engineered blood vessel (TEBV) in the lab, according to a new study.

Researchers at the University of Oklahoma (Norman, USA) first differentiated adipose-derived stem cells into smooth muscle cells (SMCs), and then seeded them onto a flat sheet of the human amniotic membrane--a very thin collagen membrane--used as a biological substrate to fabricate the small-diameter TEBVs. More...
To develop a tubular construct similar to that of a muscular artery's tunica media layer, the cell-seeded sheet was wrapped around a 3-mm removable mandrel with six to seven revolutions. After a two-week static culture period, the fabricated TEBV was assessed for biochemical and mechanical properties.

The researchers examined and compared the contraction of the vessel in response to carbachol--a specific agonist for SMCs--to that of porcine coronary arteries; burst pressure and elastic modulus tests were also conducted. The researchers found that the thickness and architecture of the engineered vessel matched that of a porcine coronary artery in a histological analysis; it also performed better than the porcine vessel for elasticity in a tensile strength test. However, the burst pressure was too low, at about 150 mm Hg, while native tissue withstands 1,000 mm Hg. The problem, according to the researchers, appeared to be that the layers of the rolled-up vessel are not adhering well to one another.

The researchers found that the mechanical integrity of the construct could be further improved by exposure to appropriate physiological conditions in a perfusion bioreactor, and that adipose-derived endothelial cells also could be seeded into the lumen of the construct to prevent platelet adhesion. The study was presented at the American Heart Association Basic Cardiovascular Sciences 2012 scientific sessions, held during July 2012 in New Orleans (LA, USA).

“These liposuction-derived vessels, grown in a lab, could help solve major problems associated with grafting blood vessels from elsewhere in the body or from using artificial blood vessels that are not living tissue,” concluded lead author and study presenter Matthias Nollert, PhD, and colleagues of the school of chemical, biological, and materials engineering. “Our engineered blood vessels have good mechanical properties and we believe they will contract normally when exposed to hormones.”

Related Links:

University of Oklahoma




Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.