Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Search for Driver Mutations Highlights the Genetic Diversity of Breast Cancer

By LabMedica International staff writers
Posted on 29 May 2012
A recent paper underscored the genetic diversity of breast tumors by adding nine new genes to the list of over 40 genes that have been linked to the development of this disease.

Investigators at the Wellcome Trust Sanger Institute (Hinxton, United Kingdom) in cooperation with the Oslo Breast Cancer Consortium (OSBREAC) examined the genomes of 100 tumors for somatic copy number changes and mutations in the coding exons of protein-coding genes. More...
In particular, they were looking for “driver mutations,” which confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis.

They reported in the May 16, 2012, online edition of the journal Nature that the number of somatic mutations varied markedly between individual tumors. They found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about 10% of tumors characterized by numerous cytosine mutations in certain dinucleotides.

Driver mutations were identified in nine new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1, and TBX3. Overall, among the 100 tumors studied, driver mutations were found in at least 40 cancer genes and 73 different combinations of mutated cancer genes.

“In 28 cases we found only a single driver, but the maximum number of driver mutations in an individual cancer was six,” said contributing author Dr. Mike Stratton, director of the Wellcome Trust Sanger Institute. “We found that breast cancer can be caused by more than 70 different combinations of mutations. If we consider three breast cancers, each with four driver mutations: they might share none of those driver mutations – so each is a different genetic “animal.” They are different cancers driven by different genes. We need to classify them as carefully as we can. This study is a step towards that goal.”

“The picture is certainly more complicated than we would have wanted, but as with many other things knowledge is our strongest weapon. These comprehensive insights reveal the faulty wiring of the cellular circuit board that causes cells to behave as cancers. Understanding our enemy at this level of detail will allow us to take more rational approaches to therapy, to understand why some cancers respond to drugs and others do not, and direct us to new vulnerabilities to be exploited in new treatments,” said Dr. Stratton.

Related Links:
Wellcome Trust Sanger Institute


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.