Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Search for Driver Mutations Highlights the Genetic Diversity of Breast Cancer

By LabMedica International staff writers
Posted on 29 May 2012
A recent paper underscored the genetic diversity of breast tumors by adding nine new genes to the list of over 40 genes that have been linked to the development of this disease.

Investigators at the Wellcome Trust Sanger Institute (Hinxton, United Kingdom) in cooperation with the Oslo Breast Cancer Consortium (OSBREAC) examined the genomes of 100 tumors for somatic copy number changes and mutations in the coding exons of protein-coding genes. More...
In particular, they were looking for “driver mutations,” which confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis.

They reported in the May 16, 2012, online edition of the journal Nature that the number of somatic mutations varied markedly between individual tumors. They found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about 10% of tumors characterized by numerous cytosine mutations in certain dinucleotides.

Driver mutations were identified in nine new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1, and TBX3. Overall, among the 100 tumors studied, driver mutations were found in at least 40 cancer genes and 73 different combinations of mutated cancer genes.

“In 28 cases we found only a single driver, but the maximum number of driver mutations in an individual cancer was six,” said contributing author Dr. Mike Stratton, director of the Wellcome Trust Sanger Institute. “We found that breast cancer can be caused by more than 70 different combinations of mutations. If we consider three breast cancers, each with four driver mutations: they might share none of those driver mutations – so each is a different genetic “animal.” They are different cancers driven by different genes. We need to classify them as carefully as we can. This study is a step towards that goal.”

“The picture is certainly more complicated than we would have wanted, but as with many other things knowledge is our strongest weapon. These comprehensive insights reveal the faulty wiring of the cellular circuit board that causes cells to behave as cancers. Understanding our enemy at this level of detail will allow us to take more rational approaches to therapy, to understand why some cancers respond to drugs and others do not, and direct us to new vulnerabilities to be exploited in new treatments,” said Dr. Stratton.

Related Links:
Wellcome Trust Sanger Institute


New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.