We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




In-Vitro Programmable Biologic Microfactories Created for Drug Discovery and Delivery

By Biotechdaily staff writers
Posted on 16 Apr 2008
A cross-disciplinary research team of researchers has shown for the first time that enzymes will perform their typical biochemical functions when electronically placed within a man-made "biochip”--an important advance in the development of biochip technology for in-vitro drug discovery and delivery applications.

The researchers, from the University of Maryland's A. More...
James Clark School of Engineering and the University of Maryland Biotechnology Institute (UMBI; College Park, MD, USA), created the biochip as a tiny bioprocess "factory” containing multiple processing sites that are addressed fluidically, electrically, and optically. At these sites the researchers used electrical voltage to place the naturally occurring biopolymer chitosan, which serves as a platform for assembling biomolecules. They have now effectively assembled an enzyme from bacteria within the biochip and demonstrated that it can catalytically convert a small molecule, S-adenosyl-L-homocysteine
(SAH), to adenine and S-ribosylhomocysteine (SRH) products--products essential for cell-cell communication.

"We have now demonstrated perhaps the key advance needed to realize what we seek, a powerful laboratory tool for drug discovery,” said Dr. Gary Rubloff, professor in the Clark School's department of Materials Science and engineering and Institute for Systems Research (ISR), director of the Maryland NanoCenter, and a member of the research team.

The team brings together expertise in biomolecular engineering, biopolymers, chemical processing microsystems and materials. "Using biochip microfactories, we believe it will be possible to test potential drugs for their action in modifying biochemical processes that we know are important in living cells,” Dr. Rubloff said. "We hope to enable scientists and physicians to create better, more effective drugs more rapidly and at reduced cost.”

One targeted application of the microfactory is to develop drugs that can interrupt "quorum-sensing.” In quorum-sensing, a bacterium generates a small molecule called an autoinducer. The autoinducer is a signal to other bacteria, which, if present, create a quorum that is pathogenic, leading to an infection. When the pfs enzyme the researchers assembled in the biochip converted SAH to adenine and SRH, the enzyme performed the first two primary reaction steps in the production of autoinducer-2 (AI-2) by Escherichia coli bacteria, major sources of infection.

By reproducing biochemical reaction sequences such as that leading to AI-2 production, the microfactory can support drug discovery. Candidate drugs can be applied in the biochip to evaluate their ability to suppress or interrupt the production of the autoinducer as well as to identify which part of the biochemical synthesis pathway is affected by the drug.

Drugs that inhibit the action of the pfs enzyme or later steps in AI-2 synthesis will not only serve as good candidates for new antibiotics, but they promise a new approach for antibiotic therapy. Traditional antibiotics work by killing bacteria, but in doing so they trigger mutations that provide resistance to the drugs.

The University of Maryland researchers are looking for drugs that, instead of killing the bacteria, would simply interfere with the communication between them so that they do not form a coordinated pathogenic population. The team sees in the near future the use of programmable biologic microfactories as tools for rapid screening and development of new drugs prior to time-consuming, expensive clinical trials.

The study's findings were published in the March 2008 issue of the journal Lab on a Chip.


Related Links:
University of Maryland Biotechnology Institute

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.