We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Scanning Tunneling Spectroscopy Reveals Electronic Structure of DNA Molecules

By Biotechdaily staff writers
Posted on 18 Mar 2008
In a recent publication, researchers in the field of molecular biophysics have presented the electronic structure of single DNA molecules.

Investigators at the Hebrew University of Jerusalem (Israel) and the University of Modena e Reggio Emilia (Italy) and other collaborators used a combination of advanced instrumentation and quantum theory to produce the findings that were published in the January 2008 issue of the journal Nature Materials.

The technique called scanning tunneling spectroscopy (an off-shoot of scanning tunneling microscopy, or STM) had been used for nearly 20 years to resolve the energy-level structure of single DNA molecules without success. More...
STM is a powerful way to view surfaces at the atomic level by probing the density of states of a material using tunneling current. For STM, good resolution is considered to be 0.1 nm lateral resolution and 0.01 nm depth resolution. STM can be used not only in ultra high vacuum but also in air and various other liquid or gas ambients, and at temperatures ranging from near zero Kelvin to a few hundred degrees Celsius.

The STM method is based on the concept of quantum tunneling. When a conducting tip is brought very near to a metallic or semiconducting surface, a bias between the two can allow electrons to tunnel through the vacuum between them. Variations in current as the probe passes over the surface are translated into an image. STM is a challenging technique, as it requires extremely clean surfaces and sharp tips.

In the current study, the investigators worked at minus 195 degrees Celsius to measure the current that passed across a poly(G)–poly(C) DNA molecule deposited on a gold substrate. Quantum equations applied to the images that were obtained allowed identification of the parts of the double helix that contribute to the charge flow along the molecule.

These findings are expected to be of importance to researchers in many scientific areas from biochemistry to nanotechnology. They are especially relevant to the field of nano-bioelectronics, where DNA is being used to form conducting molecular wires in molecular computing networks that are smaller and more efficient than those produced today with silicon technology.


Related Links:
Hebrew University of Jerusalem
University of Modena e Reggio Emilia

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.