We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Delayed Early Genes Prevent Runaway Cell Division

By Biotechdaily staff writers
Posted on 05 Mar 2007
Print article
Cancer researchers have identified a cluster of genes in normal cells that prevent the type of runaway cell division that characterizes cancer cells.
When normal cells respond to the correct outside stimulus, such as binding of epidermal growth factor, to divide, a group of genes termed "immediate early genes” begin to function. Immediate early genes (IEGs) are activated transiently and rapidly in response to a wide variety of cellular stimuli. They represent a standing response mechanism that is activated at the transcription level in the first round of response to stimuli, before any new proteins are synthesized. Thus, IEGs are distinct from "late response” genes, which can only be activated later following the synthesis of early response gene products.
In the current study, investigators at the Weizmann Institute of Science (Rehovot, Israel) identified a distinct subset of IEGs that they call "delayed” early genes. The task of these genes is to suppress IEG activity so that cell division stops and does not spin out of control.
Their study, published in the February 25, 2007, online edition of Nature Genetics, revealed that after being triggered by the proper stimulus, a first wave of IEGs initiated cell division and was active for from 20 to 40 minutes. After that, four more waves of genetic activity, ranging from 40 to 240 minutes after the signal, were comprised primarily of gene activity tied to the process of halting cell division. Overall, the investigators identified 50 genes that interfered with the activities of the first wave of genes. This inhibitory system functioned by producing proteins that directly attached to the cell-division genes, hindering their activity.

As might be anticipated, analysis of the activity of the delayed early genes in cancerous tissues showed that they did not function or functioned only poorly. This misbehavior was directly linked to the aggressiveness of the cancer and the likelihood of the patient to recover.


Related Links:
Weizmann Institute of Science
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.