We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Biosensing Platform Combined with Machine Learning to Enable Minimally-Invasive Detection of Alzheimer's

By LabMedica International staff writers
Posted on 28 Oct 2022
Print article
Image: Researchers are exploring the use of ML for a minimally invasive system to detect Alzheimer\'s disease (Photo courtesy of NIH)
Image: Researchers are exploring the use of ML for a minimally invasive system to detect Alzheimer\'s disease (Photo courtesy of NIH)

Alzheimer's disease is a severe neurodegenerative disorder characterized by progressive memory, cognitive impairment and personality changes, which can further evolve to dementia and death. Early detection allows doctors to give timely treatments and interventions for the patient. Currently, doctors rely on several biomarkers - substances in an organism that can indicate the existence of a disease or condition - to detect Alzheimer's disease. However, collecting data that inform about these biomarkers is expensive and can be time-consuming. Now, a machine learning system being developed could provide a minimally invasive approach for detecting Alzheimer's disease as early as possible.

A team of researchers led by Penn State (University Park, PA, USA) has received a USD 1.2 million grant from the National Institutes of Health (NIH, Bethesda, MD, USA) to help fund a project to develop a machine learning system for early Alzheimer’s disease detection. The research team plans to design a system that utilizes a variety of biosensors, including optical, mechanical and electrochemical nano-sensors, that can analyze biological samples. According to the researchers, biosensing data matches well with the capabilities of machine learning techniques and the combination of the two technologies could even pave the way to new discoveries for other conditions and disease. Currently, the team is analyzing animal biological samples, but, if these initial inquiries prove successful, the researchers will move on to study human biological samples.

“By integrating a multimodal biosensing platform and a machine learning framework, we expect the system to improve early detection of Alzheimer's disease and enhance AD detection accuracy,” said Fenglong Ma, assistant professor of information sciences and technology and Institute for Computational and Data Sciences co-hire. “The biosensing platform will generate different types of sensing data, and machine learning aims to analyze these data to predict Alzheimer’s in the early stage. Since the sensing data are so diverse - or heterogeneous - advanced machine learning techniques can help model such data. Also, machine learning may help us identify some new AD biomarkers.”

“Given different types of sensing data, for instance, data acquired from different biochemical markers in human body fluids, machine learning can perform feature selection and establish associations between an individual biomarker and Alzheimer's disease, or between a set of biomarkers and the disease,” said Sharon Huang, professor of information sciences and technology and Huck Institutes of the Life Sciences co-hire. “We hope our project can result in a minimally-invasive technique that can detect Alzheimer's disease in its early stages. The technique also has the potential to be high throughput, making it possible to be used in screening for the disease. We will also try our best to make the technique accurate, reducing false positives and false negatives in AD detection.”

Related Links:
Penn State
NIH

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.