We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

By LabMedica International staff writers
Posted on 24 Apr 2023
Print article
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes a significant economic burden on global healthcare systems. Numerous studies have established connections between various cardiovascular diseases and specific protein biomarkers in the blood. However, current methods for analyzing these protein biomarkers, such as ELISA or western blot assays, involve multistep, reagent-intensive processes and require specialized laboratory equipment, limiting their practical applicability and resulting in delayed treatment, reduced compliance, and worse outcomes. Consequently, there is an urgent need for novel methods that enable direct, reagent-free analysis of molecular analytes to identify cardiovascular abnormalities in their early stages and prevent or mitigate their progression.

A team of researchers at University of Toronto (Ontario, Canada) and Northwestern University (Evanston, IL, USA) has designed an electronic biosensor utilizing DNA aptamers to detect biomarkers in whole blood samples without the need for additional reagents. These DNA aptamers recognize marker proteins as effectively as antibodies, but they are simpler to produce and more versatile. The biosensor successfully identified clinically relevant levels of a cardiovascular disease marker protein without further sample preparation.

The researchers' goal was to create diagnostic tools capable of directly, reliably, and in-field detection of disease biomarkers, eliminating the need to send samples to specialized labs for analysis. The chip-based device developed by the researchers employs chronoamperometric measurements to identify marker proteins in complex samples. Their nanoscale sensor system functions as a molecular "pendulum," measuring the extra load a protein places on the pendulum, which consists of a DNA strand attached to an electrode, without requiring external reagents.

While antibodies are typically used to locate and bind marker proteins in complex mixtures, their complexity makes designing and producing them a challenge. Instead, researchers found that smaller, simpler DNA aptamers can be used as alternatives to antibodies. DNA aptamers are short synthetic fragments with specific shapes and structures, relatively easy and inexpensive to produce, and their structures can be customized. Like antibodies, DNA aptamers can bind marker proteins through molecular and structural interactions but are simpler to design.

The researchers developed an aptamer-based sensor by creating a DNA aptamer specific to B-type natriuretic peptide (BNP), a cardiovascular disease biomarker, and connecting it to the DNA pendulum strand tethered to a gold electrode, forming the molecular pendulum sensor. This biosensor effectively detected BNP, even in complex samples such as unprocessed whole blood from cardiac patients. As the sensitivity of the aptamer-based system was found to be comparable to that of antibody-based detection, the researchers recommend further exploration and adoption of DNA aptamers for laboratory-independent diagnostics.

Related Links:
University of Toronto 
Northwestern University 

Platinum Supplier
Xylazine Immunoassay Test
Xylazine ELISA
New
Gold Supplier
Spinal Fluid Cell Count Control
Spinalscopics
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Chikungunya & Dengue Virus Test
cobas CHIKV/DENV

Print article

Channels

Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more

Molecular Diagnostics

view channel
Image: The PrismRA blood test helps target best treatments for patients with rheumatoid arthritis (Photo courtesy of Scipher Medicine)

Groundbreaking Rheumatoid Arthritis Blood Test Predicts Treatment Response

Rheumatoid arthritis (RA), an autoimmune disease affecting joints and other systems in the body, impacts millions globally. Typically, the initial biologic treatment involves anti-inflammatory drugs from... Read more

Hematology

view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more

Immunology

view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more

Microbiology

view channel
Image: Current testing methods for antibiotic susceptibility rely on growing bacterial colonies in the presence of antibiotics (Photo courtesy of 123RF)

Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1.3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating... Read more

Pathology

view channel
Image: AI methods used in satellite imaging can help researchers analyze tumor images (Photo courtesy of Karolinska Institutet)

AI Approach Combines Satellite Imaging and Ecology Techniques for Analysis of Tumor Tissue

Advancements in tumor imaging technology have significantly enhanced our ability to observe the minute details of tumors, but this also brings the challenge of interpreting vast amounts of data generated... Read more

Industry

view channel
Image: The acquisition significantly expands Medix Biochemica’s portfolio of IVD raw materials (Photo courtesy of ViroStat)

Medix Biochemica Acquires US-Based ViroStat to Expand Infectious Diseases Antibody Offering

Medix Biochemica (Espoo, Finland), a supplier of critical raw materials to the in vitro diagnostics (IVD) industry, has acquired ViroStat LLC (Portland, ME, USA), a provider of infectious disease antibodies... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.